精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若对任意的恒成立,求的取值范围.

【答案】(Ⅰ) (1)若上单调递增;(2)若上单调递增;在上单调递减; (Ⅱ).

【解析】

I)先求得函数的导数和定义域,然后对分成两类,讨论函数的单调性.II)将原不等式恒成立转化为“对任意的恒成立”,根据(I)的结论,结合函数的单调性,以及恒成立,求得的取值范围.

(Ⅰ) ,

(1)若,则,函数上单调递增;

(2)若,由;由

函数上单调递增;在上单调递减.

(Ⅱ)由题设,对任意的恒成立

对任意的恒成立

对任意的恒成立 ,

由(Ⅰ)可知,

,则不满足恒成立,

,由(Ⅰ)可知,函数上单调递增;在上单调递减.

,又恒成立

,即,

,则

函数上单调递增,且

,解得

的取值范围为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在气象台A正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区都将受到影响.若台风中心的这种移动趋势不变,气象台所在地是否会受到台风的影响?如果会,大约多长时间后受到影响?持续时间有多长(精确到)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数的导数,若的导数,若方程方有实数解则称.

为函数的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设数列的通项公式为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(I)讨论的单调性;

(Ⅱ)当时,讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校开展一次知识竞赛活动,共有三个问题,其中第1、2题满分都是15分,第3题满分是20分.每个问题或者得满分,或者得0分.活动结果显示,每个参赛选手至少答对一道题,有6名选手只答对其中一道题,有12名选手只答对其中两道题.答对第1题的人数与答对第2题的人数之和为26,答对第1的人数与答对第3题的人数之和为24,答对第2题的人数与答对第3题的人数之和为22.则参赛选手中三道题全答对的人数是____;所有参赛选手的平均分是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前项和为,且满足,其中是常数.

1)若,求数列的通项公式;

2)若,且,求数列的前项和

3)试探究满足什么条件时,数列是公比不为的等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面问题中,并解决问题.

已知__________,求.

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

同步练习册答案