精英家教网 > 高中数学 > 题目详情
若双曲线的焦点为F1(-4,0),F2(4,0),实轴长与虚轴长相等,则双曲线的标准方程为:______.
由于实轴长与虚轴长相等,
则可设等轴双曲线方程为x2-y2=a(a>0),
化成标准方程:
x2
a
-
y2
a
=1

由标准方程得:c=
2
a
=4,
∴a=8
∴所求的等轴双曲线方程为
x2
8
-
y2
8
=1

故答案为:
x2
8
-
y2
8
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

双曲线的左、右焦点分别为F1,F2,点P为该双曲线在第一象限的点,△PF1F2面积为1,且则该双曲线的方程为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)点M到点F(2,0)的距离比它到直线x=-3的距离小1,求点M满足的方程.
(2)曲线上点M(x,y)到定点F(2,0)的距离和它到定直线x=8的距离比是常数2,求曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线的方程为3x±4y=0,则该双曲线的标准方程为(  )
A.
x2
9
-
y2
16
=1
B.
x2
16
-
y2
9
=1
C.
y2
9
-
x2
16
=1
D.
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,右准线方程为x=
3
3

(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
y2
9
-
x2
16
=1
上的一点P到它一个焦点的距离为4,则点P到另一焦点的距离是(  )
A.2B.10C.10或2D.14

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)的一条渐近线与抛物线x=y2的一个交点的横坐标为x0,若x0
1
2
,则双曲线C的离心率的取值范围是(  )
A.(1,
6
2
)
B.(1,
3
)
C.(
3
,+∞)
D.(
6
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过F且斜率为
3
的直线交C于A、B两点,若
AF
=4
FB
,则双曲线C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线
x2
25
-
y2
9
=1
与曲线
x2
25-k
-
y2
9+k
=1(-9<k<25)
的(  )
A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等

查看答案和解析>>

同步练习册答案