精英家教网 > 高中数学 > 题目详情
9.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的体积为(  )
A.12πcm3B.15πcm3C.24πcm3D.36πcm3

分析 根据几何体的三视图,得出该几何体是圆锥,结合图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是圆锥,且底面圆的直径是6,母线长是5,
所以该圆锥的高是$\sqrt{{5}^{2}{-3}^{2}}$=4,
则其体积为V=$\frac{1}{3}$×π×32×4=12πcm2
故选:A.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.命题P:存在实数x,x2-2cx+c<0;命题Q:|x-1|-x+2c>0对任意x∈R恒成立.若P或Q为真,P且Q为假,试求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列等式成立的是(  )
A.log2[(-3)(-5)]=log2(-3)+log2(-5)B.log2(-10)2=2log2(-10)
C.log2[(-3)(-5)]=log23+log25D.log2(-5)3=-log253

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow a=({2,t,-1})$,$\overrightarrow b=({-2,3,1})$,若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数t的取值范围为$({-∞,-3})∪({-3,\frac{5}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为(  )
A.B.14πC.$\frac{7}{2}π$D.$\frac{{7\sqrt{14}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{\begin{array}{l}m{x^2}-8ax+n,x<1\\ log_a^x\begin{array}{l}{\begin{array}{l},{x≥1}\end{array}}\end{array}\end{array}\right.$,其中m为函数$g(x)=2x+\sqrt{x-1}$的最小值,n为函数$h(x)={3^{1-{x^2}}}$的最大值,且对任意x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_1}-{x_2}}}>0$成立,则实数a的取值范围是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.$[\frac{5}{8},1)$D.$[\frac{1}{2},\frac{5}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,且对n∈N*都有Sn=2an+n-4
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=$\frac{1}{nlo{g}_{2}({a}_{n}-1)}$,(n∈N*)且{bn}的前n项和为Tn,求证:Tn<$\frac{7}{4}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x5-ax3+bx+2,且f(-5)=3,则f(5)+f(-5)的值为(  )
A.0B.4C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知cos(α+$\frac{π}{6}}$)=$\frac{2}{3}$,则sin(2α+$\frac{5π}{6}}$)的值为-$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案