精英家教网 > 高中数学 > 题目详情

【题目】下列选项中说法正确的是(
A.命题“p∨q为真”是命题“p∧q为真”的必要条件
B.向量 满足 ,则 的夹角为锐角
C.若am2≤bm2 , 则a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

【答案】A
【解析】解:对于A,若p∨q为真命题,则p,q至少有一个为真命题,若p∧q为真命题,则p,q都为真命题,则“p∨q为真命题”是“p∧q为真命题”的必要不充分条件,正确; 对于B,根据向量数量积的定义,向量 满足 ,则 的夹角为锐角或同向,故错;
对于C,如果m2=0时,am2≤bm2成立,a≤b不一定成立,故错;
对于D,“x0∈R,x02﹣x0≤0”的否定是“x∈R,x2﹣x>0”,故错.
故选:A.
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数

(1)若函数是偶函数,求实数的取值范围;

(2)若函数且任意都有恒成立,求实数的取值范围;

(3)若,求上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,D为BC的中点,∠BAD+∠C≥90°. (Ⅰ)求证:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=﹣ ,AB=2,AD=3,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且 =5,则| |等于(
A.2
B.4
C.6
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,点E在AD上,且AE=2ED. (Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB= b.
(1)求角A的大小;
(2)若0<A< ,a=6,且△ABC的面积S= ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足: ,若目标函数z=ax+y取最大值时的最优解有无数多个,则实数a的值是(
A.0
B.﹣1
C.±1
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆 上任意一点,则线段PQ长度的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学家赵爽设计的弦图(如图1)是由四个全等的直角三角形拼成,四个全等的直角三角形也可拼成图2所示的菱形,已知弦图中,大正方形的面积为100,小正方形的面积为4,则图2中菱形的一个锐角的正弦值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案