精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD的底面是矩形,侧面PAD为等边三角形,ABAD PB.

(1)求证:平面PAD⊥平面ABCD

(2)M是棱PD上一点,三棱锥MABC的体积为1.记三棱锥PMAC的体积为,三棱锥MACD的体积为,求.

【答案】(1)详见解析;(2).

【解析】

1)由勾股定理可得,又,可得平面,可得平面平面

2)由三棱锥与三棱锥等底同高,可得,又由正三角形的高也就是三棱锥的高,计算出三棱锥的体积,从而得出,再得出的值.

1)由已知,得,于是,故

因为四边形ABCD是矩形,所以,又,所以平面,因为平面

所以:平面平面.

2)依题意,得三棱锥与三棱锥等底同高,所以

又正三角形中,,所以正三角形的高为,

由(1)得正三角形的高也就是三棱锥的高,

所以

所以,故.

故得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费.

1)当每辆车的月租金定为元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:

组别

频数

(Ⅰ)求所得样本的中位数(精确到百元);

(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该所大学共有学生人,试估计有多少位同学旅游费用支出在元以上;

(Ⅲ)已知样本数据中旅游费用支出在范围内的名学生中有名女生, 名男生,现想选其中名学生回访,记选出的男生人数为,求的分布列与数学期望.

附:若,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)f(x)的最小正周期及单调减区间;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,平面和平面所成角为,则三棱锥外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1) 求实数的值;

(2) 判断并用定义证明该函数在定义域上的单调性;

(3) 若方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.

(1)求点的轨迹方程;

(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=Asinωx+1A0ω0)的最大值为3,其图象相邻两条对称轴之间的距离为

1)求函数fx)的解析式;

2)求函数yfx)的单调增区间;

3)设α∈(0),则f)=2,求α的值.

查看答案和解析>>

同步练习册答案