精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,四棱柱中,平面,底面是边长为的正方形,侧棱.

(1)求证:平面
(2)求直线与平面所成角的正弦值.
(1)证明:四棱柱中,
,所以平面,         ………………2分
是正方形,所以
,所以平面,          ………………3分
所以平面平面
所以平面.                              ………………5分
(2)解:是正方形,
因为平面
所以
如图,以为原点建立空间直角坐标系,.       ………………6分

中,由已知可得
所以
, ……………………………………………………………8分
因为平面
所以平面


所以平面
所以平面的一个法向量为
,   …………………10分
所成的角为,又.                 
所以直线与平面所成角的正弦值为.       ……………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正方形中,沿对角线将正方形折成一个直二面角,则点到直线的距离为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )
A.异面 B.平行C.相交D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体中,分别是棱的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体的三条棱两两垂直,,为四面体外一点.给出下列命题.
①不存在点,使四面体有三个面是直角三角形
②不存在点,使四面体是正三棱锥
③存在点,使垂直并且相等
④存在无数个点,使点在四面体的外接球面上
其中真命题的序号是
A.①②
B.②③
C.③
D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设条件甲:直四棱柱中,棱长都相等;条件乙:直四棱柱是正方体,那么甲是乙的                              (     )
A.充分必要条件B.充分非必要条件
C.必要非充分条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知四棱锥的底面为正方形且侧棱长与底面边长相等,的中点,则所成的角的余弦值为______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如右图,圆锥中,为底面圆的两条直径,,且的中点.异面直线所成角的正切值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如题19图,平行六面体的下底面是边长为的正方形,,且点在下底面上的射影恰为点.

(Ⅰ)证明:
(Ⅱ)求二面角的大小.

查看答案和解析>>

同步练习册答案