精英家教网 > 高中数学 > 题目详情
在下列四个命题中
①已知A、B、C、D是空间的任意四点,则
AB
+
BC
+
CD
+
DA
=
0

②若{
a
b
c
}为空间的一组基底,则{
a
+
b
b
+
c
c
+
a
}也构成空间的一组基底.
|(
a
b
)|•
c
=|
a
|•|
b
|•|
c
|

④对于空间的任意一点O和不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x,y,z∈R),则P、A、B、C四点共面.
其中正确的个数是(  )
A、3B、2C、1D、0
分析:①由向量的运算法则知正确
②两边平方,利用向量的平方等于向量模的平方,得出两向量反向.
③向量共线的几何意义知所在的线平行或重合.
④利用空间向量的基本定理知错.
解答:解:易知只有①是正确的,
对于②,|③已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
,也是空间的一个基底;因为三个向量非零不共线,正确..
对于③
a
b
共线,则它们所在直线平行或重合
对于④,若O∉平面ABC,则
OA
OB
OC
不共面,由空间向量基本定理知,P可为空间任一点,所以P、A、B、C四点不一定共面.
故选C.
点评:本题考查向量的运算法则、向量模的平方等于向量的平方、向量的几何意义、空间向量基本定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、已知两个不同的平面α,β和两条不重合的直线m,n,在下列四个命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

4、已知a、b为直线,α、β为平面.在下列四个命题中,
①若a⊥α,b⊥α,则a∥b;  ②若 a∥α,b∥α,则a∥b;
③若a⊥α,a⊥β,则α∥β;   ④若α∥b,β∥b,则α∥β.
正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个命题中:
①函数y=tan(x+
π
4
)
的定义域是{x|x≠
π
4
+kπ,k∈Z}

②已知sinα=
1
2
,且α∈[0,2π],则α的取值集合是{
π
6
}

③函数f(x)=sin2x+acos2x的图象关于直线x=-
π
8
对称,则a的值等于-1;
④函数y=cos2x+sinx的最小值为-1.
把你认为正确的命题的序号都填在横线上
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个命题中,把你认为正确的命题的序号都填在横线上
 

①函数y=tan(x+
π
4
)
的定义域是{x|x≠
π
4
+kπ,k∈Z}

②已知sinα=
1
2
,且α∈[0,2π],则α的取值集合是{
π
6
}

③函数f(x)=sin2x+cos2x图象的最大值为
2

④函数y=cos2x+sinx的最小值为-1.

查看答案和解析>>

同步练习册答案