精英家教网 > 高中数学 > 题目详情

【题目】为了解学生课外使用手机的情况,某研究学习小组为研究学校学生一个月使用手机的总时间,收集了500名学生201912月课余使用手机的总时间(单位:小时)的数据.从中随机抽取了50名学生,将数据进行整理,得到如图所示的频率分布直方图.已知这50人中,恰有2名女生的课余使用手机总时间在区间,现在从课余使用手总时间在样本对应的学生中随机抽取2人,则至少抽到1名女生的概率为(

A.B.C.D.

【答案】B

【解析】

由频率分布直方图求出在区间的学生人数,然后求出抽取2人的总方法数和至少有1名女生的方法数,从而计算出概率.

,则样本对应的学生为5人,即2名女生,3名男生,从中抽取2人有10种方法,至少抽到一名女生有7种方法,概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,过动点,垂足在线段上且异于点,连接,沿折起,使(如图2所示),

1)当的长为多少时,三棱锥的体积最大;

2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线,过抛物线上一点作两条直线与分别相切于两点,分别交抛物线于两点.

(1)当的角平分线垂直轴时,求直线的斜率;

(2)若直线轴上的截距为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数满足任意都有的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自201911日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如表:

个人所得税税率表调整前

个人所得税税率表调整后

免征额3500

免征额5000

级数

全月应纳税所得额

税率

级数

全月应纳税所得额

税率

1

不超过1500元部分

3

1

不超过3000元部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?

2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

收入

人数

40

30

10

8

7

5

先从收入在的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量X表示抽到作为宣讲员的收入在元的人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:(x+m2+y24n2mn0mn),点Nm0),P是圆M上的动点,线段PN的垂直平分线交直线PM于点Q,点Q的轨迹为曲线C

1)讨论曲线C的形状,并求其方程;

2)若m1,且QMN面积的最大值为.直线l过点N且不垂直于坐标轴,l与曲线C交于AB,点B关于x轴的对称点为D.求证:直线AD过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线与圆的相交弦长为4.

1)求抛物线的标准方程;

2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.

查看答案和解析>>

同步练习册答案