【题目】2019年9月20日,黔东南州第十届旅游产业发展大会在凯里市举行,大会指出了交通对旅游业的发展有着深刻的影响,并引起了相关部门的高度重视.现针对凯里市区重要道路网中的个交通路段,依据其交通指数数据绘制的频率分布直方图如下图所示.(交通指数是综合反映道路网畅通或拥堵的概念性指数值,记为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵)
(1)利用频率分布直方图估计凯里市区这个交通路段的交通指数的众数与平均数.
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取个路段,再从这个路段中任取个,求至少有个路段为中度拥堵的概率.
【答案】(1)众数为,平均数6.3(2)
【解析】
(1)根据众数为频率分布直方图最高一组的组中值,平均数为各组的组中值与频率的乘积之和,计算可得;
(2)首先计算出各组抽取的数量,记抽取的个轻度拥堵路段为,个中度拥堵路段为,个重度拥堵的路段为,用列举法将所有可能情况一一列举,再由古典概型的概率公式计算可得;
解:(1)由图知众数为
∵
∴平均数为
(2)由图可得轻度拥堵的路段有(个),
中度拥堵的路段有(个),
重度拥堵的路段有(个),
用分层抽样的方法,在上述的个路段共抽取个路段,则应从轻度拥堵、中度拥堵、重度拥堵的路段中分别抽取的个数为.
记抽取的个轻度拥堵路段为,个中度拥堵路段为,个重度拥堵的路段为,则从这个路段中任取个的所有可能情况为、、、、、、、、、、、、、、、、、、、,共种情况,其中至少有个路段为中度拥堵的情况为、、、、、、、、、,共种.
记至少有个路段为中度拥堵为事件,则.
科目:高中数学 来源: 题型:
【题目】设有关于x的一元二次方程.
若a是从0,1,2三个数中任取的一个数,b是从0,1,2,3四个数中任取的一个数,求上述方程有实根的概率;
若a是从区间任取的一个数,b是从区间任取的一个数,求上述方程有实数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求的单调递增区间.
(2)在ΔABC中,角A,B,C所对的边分别为a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中线AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足,.
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)给出定义:若s,t,r满足,则称s比t更接近于r,当x≥1时,试比较和哪个更接近,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )
(参考数据:)
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
()
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①命题“若,则”的逆否命题;
②“,使得”的否定是:“,均有”;
③命题“”是“”的充分不必要条件;
④:,:,且为真命题.
其中真命题的序号是________.(填写所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量(,2,…,10)数据作了初步处理,得到如图散点图及一些统计量的值.
表中.
(1)根据散点图判断,与哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)
(2)根据表中数据,求声音强度关于声音能量的回归方程.
参考公式:;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com