精英家教网 > 高中数学 > 题目详情
(本小题12分)椭圆的左、右焦点分别为,直线经过点与椭圆交于两点。
(1)求的周长;
(2)若的倾斜角为,求的面积。
(1)的周长为
(2)
本题考查三角形周长的求法和三角形面积的计算,解题时要认真审题,注意挖掘题设中的隐含条件,灵活运用椭圆的性质,注意椭圆定义、韦达定理在解题中的合理运用.
(1)由椭圆的定义,得AF1+AF2=2a,BF1+BF2=2a,又AF1+BF1=AB,所以,△ABF2的周长=AB+AF2+BF2=4a.再由a2=4,能导出△ABF2的周长.
(2)由F1(-1,0),AB的倾斜角为 ,知直线AB的方程为y=x+1.由
 
消去x,得7y2-6y-9=0,设A(x1,y1),B(x2,y2),借助韦达定理能够求出△ABF2的面积.
解:(1)由椭圆的定义,得, ----------2分
,所以的周长为。--------4分
又因为,所以,故的周长为。-----------5分
(2)由条件,得,因为的倾斜角为,所以斜率为
故直线的方程为。-----------------6分
消去,得, ------------------8分
,解得, -------------10分
所以。------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,直线:y=x+m
(1)若与椭圆有一个公共点,求的值;
(2)若与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的标准方程为,若其焦点在轴上,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆过抛物线的焦点,且与双曲线有相同的焦点,则该椭圆的方程为:        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆=1的离心率为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,并且直线是抛物线的一条切线。
(1)求椭圆的方程
(2)过点的动直线交椭圆两点,试问:在直角坐标平面上是否存在一个定点,使得以为直径的圆恒过点?若存在求出的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点到直线的距离是
A. B.  C.1  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)在平面直角坐标系xOy中,点P到两点的距离之和等于4,设点P的轨迹为C。
(1)求出C的轨迹方程;
(2)设直线与C交于A、B两点,k为何值时?       

查看答案和解析>>

同步练习册答案