精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=x+\frac{m}{x}(m∈R)$,且该函数的图象过点(1,5).
(Ⅰ)求f(x)的解析式,并判断f(x)的奇偶性;
(Ⅱ)判断f(x)在区间(0,2)上的单调性,并用函数单调性的定义证明你的结论.

分析 (Ⅰ)根据条件求出m的值,结合函数奇偶性的定义进行证明即可,
(Ⅱ)根据函数单调性的定义进行证明即可.

解答 解:(Ⅰ)因为函数f(x)图象过点(1,5),即1+$\frac{m}{1}$=5,解得m=4.(1分)
所以$f(x)=x+\frac{4}{x}$.(2分)
因为f(x)的定义域为(-∞,0)∪(0,+∞),定义域关于坐标原点对称,
又$f(-x)=-x+\frac{4}{-x}=-({x+\frac{4}{x}})=-f(x)$,(3分)
所以函数f(x)是奇函数.(4分)
(II)函数f(x)在区间(0,2)上是减函数.(5分)
证明:设x1,x2∈(0,2),且x1<x2
则$f({x_1})-f({x_2})=({{x_1}+\frac{4}{x_1}})-({{x_2}+\frac{4}{x_2}})=({x_1}-{x_2})+({\frac{4}{x_1}-\frac{4}{x_2}})$(6分)
=$({x_1}-{x_2})-\frac{{4({x_1}-{x_2})}}{{{x_1}{x_2}}}=({x_1}-{x_2})({1-\frac{4}{{{x_1}{x_2}}}})$(8分)
因为x1,x2∈(0,2),则x1•x2∈(0,4),
所以$\frac{4}{{{x_1}{x_2}}}>1,1-\frac{4}{{{x_1}{x_2}}}<0$.(10分)
又因为x1<x2,所以x1-x2<0,
所以$({x_1}-{x_2})({1-\frac{4}{{{x_1}{x_2}}}})>0$,即f(x1)-f(x2)>0.(11分)
所以f(x)在区间(0,2)上是减函数.(12分)

点评 本题主要考查函数奇偶性和单调性的判断,利用函数奇偶性和单调性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若焦点在x轴上的椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的离心率为$\frac{1}{2}$,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数y=2sin(2x-$\frac{π}{3}$)的图象关于点P(x0,0)成中心对称,若x0∈[-$\frac{π}{2}$,0],则x0=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|1<x<4},B={x|m+1<x<3m-1},R=(-∞,+∞)
(1)当m=2时,求A∪B,A∩B,∁RB;
(2)若B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$ln({lg10})+\sqrt{{{({π-4})}^2}}$=4-π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.总体由编号为00,01,02,…48,49的50个个体组成.利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始由左到右依次选取两个数字,则选出来的第8个个体的编号为(  )
附:第6行至第9行的随机数表:
A.16B.19C.20D.38

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x1=17,x2=18,x3=19,x4=20,x5=21,将这五个数据依次输入下面程序框图进行计算,则输出的S值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.求
(Ⅰ)AC所在的直线方程;
(Ⅱ)点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{\begin{array}{l}{(3a+2)x-1,x≤1}\\{\frac{a}{x},x>1}\end{array}\right.$是R上的单调函数,则实数a的取值范围为$(-\frac{2}{3},-\frac{1}{2}]$.

查看答案和解析>>

同步练习册答案