精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=3x2+2(k﹣1)x+k+5.
(1)求函数f(x)在[0,3]上最大值;
(2)若函数f(x)在[0,3]上有零点,求实数k的取值范围.

【答案】
(1)解:由已知,函数f(x)的图象是开口向上的抛物线,对称轴为直线

,即 时,f(x)max=f(3)=7k+26.

,即 时,f(x)max=f(0)=k+5.

综上: .


(2)解:1°当函数f(x)在[0,3]上有两相同的零点时:

解得k=﹣2.

2°当函数f(x)在[0,3]上有两不同的零点时:

解得 .

3°当函数f(x)有两个不同零点且在[0,3]上仅有一个零点时:

由零点存在定理得:f(0)f(3)≤0,解得

而当k=﹣5时,f(x)=3x2﹣12x,此时该函数的零点为0和4,符合要求.

综上:﹣5≤k≤﹣2.

解法2:函数f(x)在[0,3]上有零点等价于方程3x2+2(k﹣1)x+k+5=0在[0,3]上有解

即k(2x+1)=﹣(3x2﹣2x+5)

所以

令t=2x+1∈[1,7],则 在[1,3]单调递增,在[3,7]单调递减

所以k∈[﹣5,﹣2].


【解析】(1)由已知,函数f(x)的图象是开口向上的抛物线,对称轴为直线 ,分类讨论,即可求出函数f(x)在[0,3]上最大值;(2)分类讨论函数f(x)在区间[0,3]上有两相同的零点、两不同的零点、函数f(x)有两个不同零点且在[0,3]上仅有一个零点,根据函数性质组成不等式组求解即可.或利用分离参数求最值的方法求解.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围;

2)设函数,且),求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x+x,g(x)=x3+x,h(x)=log3x+x的零点依次为a,b,c,则(
A.c<b<a
B.a<b<c
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:

月份

1月份

2月份

3月份

4月份

收购价格(元/斤)

6

7

6

5

养殖成本(元/斤)

3

4

4.6

5

现打算从以下两个函数模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,﹣π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,其中为常数;

(1)若,且是奇函数,求的值;

(2)若 ,函数的最小值是,求的最大值;

(3)若,在上存在个点 ,满足

,使得

求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fA(x)的定义域为A=[a,b),且fA(x)=( + ﹣1)2 +1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2 , (k+1)2),x2∈Ik+1=[(k+1)2 , (k+2)2),其中k是正整数,对一切正整数k,不等式 (x1)+ (x2))<m都有解,求m的取值范围;
(3)若对任意x1 , x2 , x3∈A,都有 为三边长构成三角形,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1 , F2为椭圆 的左右焦点,若椭圆上存在点P使得 ,则此椭圆的离心率的取值范围是(
A.(0,
B.(0, ]
C.( ]
D.[ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣3ax2+3bx的图象与直线12x+y﹣1=0相切于点(1,﹣11).
(1)求a,b的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案