精英家教网 > 高中数学 > 题目详情
8
-1
3x
dx=
 
考点:定积分
专题:计算题,导数的综合应用
分析:根据定积分的定义,直接计算.
解答: 解:
8
-1
3x
dx=
8
-1
d
3
4
x
4
3

=
3
4
×8
4
3
-
3
4
×(-1)
4
3

=
45
4

故答案为:
45
4
点评:本题考查定积分的定义及计算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等腰梯形ABCD中,AB∥CD,AB=3,BC=
2
,∠ABC=45°,则
AC
BD
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

质点运动规律为s=t2-3,则在时间(3,3+△t)中相应的平均速度为(  )
A、3B、6C、9D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-ex+ax+b,x<1
x2lnx-cx+c+1,x≥1
(a,b,c∈R且为常数),函数f(x)在x=0处取得极值1.
(1)求实数a,b的值;
(2)若函数y=f(x)在区间(-∞,2]上的最大值为1,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(ax2+(a-1)2x-a2+3a-12)ex,a≥0;g(x)=lnx-x-3.
(1)求g(x)的最大值;
(2)若函数f(x)在(2,3)上单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=4,E为棱CD上一点,则三棱锥E-PAB的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a4+b4+c4=2c2(a2+b2),则C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2cosα+sinα=
5

(Ⅰ)求sinα的值;
(Ⅱ)若cos(α+β)=
-
10
10
,α,β均为锐角,求
(i)cosβ的值;   (ii)2α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
的始点为A(-2,4),终点为B(2,1),求:
(1)向量
a
的模;
(2)与向量
a
平行的单位向量的坐标;
(3)与向量
a
垂直的单位向量的坐标.

查看答案和解析>>

同步练习册答案