精英家教网 > 高中数学 > 题目详情

【题目】从如图所示的,由9个单位小方格组成的,方格表的16个顶点中任取三个顶点,则这三个点构成直角三角形的概率为______

【答案】

【解析】

先计算矩形的个数,再计算直角三角形的个数.

如图所示,根据矩形特点,由这16个点可以构成个不同的矩形.

又每个矩形可以分割成4个不同的直角三角形,且不同的矩形,分割所得的直角三角形也不同.

因此,可得个直角顶点在矩形顶点的不同的直角三角形.

再算直角顶点不在矩形顶点:

1)在的矩形中,有直角顶点不在矩形顶点,边长分别为的直角三角形两个.而矩形横向、纵向各有6个,故共有个.

2)在的矩形中,有直角顶点不在矩形顶点,边长分别为的直角三角形4个,边长分别为的直角三角形4个.而矩形横向、纵向各有两个,故共有个.

所以,所求的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着5G商用进程的不断加快,手机厂商之间围绕5G用户的争夺越来越激烈,5G手机也频频降低身价飞人寻常百姓家.某科技公司为了给自己新推出的5G手机定价,随机抽取了100人进行调查,对其在下一次更换5G手机时,能接受的价格(单位:元)进行了统计,得到结果如下表,已知这100个人能接受的价格都在之间,并且能接受的价格的平均值为2350元(同一组的数据用该组区间的中点值代替).

分组

手机价格X(元)

频数

10

x

y

20

20

1)现用分层抽样的方法从第一、二、三组中随机抽取6人,将该样本看成一个总体,从中随机抽取2人,求其中恰有1人能接受的价格不低于2000元的概率;

2)若人们对5G手机能接受的价格X近似服从正态分布,其中为样本平均数为样本方差,求

附:.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E为AC的中点.

(I)证明:ADBC;

(II)求直线 DE 与平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C是矩形,平面ABC⊥平面AA1C1CAB=2AC=1

1)求证:AA1⊥平面ABC

2)在线段BC1上是否存在一点D,使得ADA1B?若存在求出的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CMCN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的AB处设置观景台,记BC=aAC=bAB=c(单位:百米)

1)若abc成等差数列,且公差为4,求b的值;

2)已知AB=12,记∠ABC,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为

(Ⅰ)求的极坐标方程;

(Ⅱ)设点的极坐标为,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,,且,则该三棱锥的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棋盘上标有第012100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站(胜利大本营)或第100站(失败集中营)是,游戏结束.设棋子跳到第n站的概率为.

1)求的值;

2)证明:

3)求的值.

查看答案和解析>>

同步练习册答案