精英家教网 > 高中数学 > 题目详情

【题目】3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

1)选5人排成一排;

2)排成前后两排,前排4人,后排3人;

3)全体排成一排,甲不站排头也不站排尾;

4)全体排成一排,女生必须站在一起;

5)全体排成一排,男生互不相邻.

【答案】12520种(25040种(33600种(4576种(51440

【解析】

1)按照排列的定义求解..

2)分两步完成,先选4人站前排进行排列,余下3人站后排进行排列,然后相乘求解..

3)先考虑甲,再其余6人进行排列,然后相乘求解.

4)将女生看作一个整体与3名男生一起全排列,再将女生全排列,然后相乘求解.

5)先排女生,再在女生之间及首尾5个空位中任选3个空位安排男生,然后相乘求解.

1)从7人中选5人排列,有(种).

2)分两步完成,先选4人站前排,有种方法,余下3人站后排,有种方法,共有(种).

3)(特殊元素优先法)先排甲,有5种方法,其余6人有种排列方法,共有(种).

4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有种方法,再将女生全排列,有种方法,共有(种).

5)(插空法)先排女生,有种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有种方法,共有(种).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是

A. 得分在之间的共有40

B. 从这100名参赛者中随机选取1人,其得分在的概率为

C. 100名参赛者得分的中位数为65

D. 估计得分的众数为55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为24171593,第二小组频数为12﹒

[

)第二小组的频率是多少?样本容量是多少?

)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?

)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的极值;

2)设函数,求函数的单调区间;

3)若对内任意一个,都有 成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是(

A.每人都安排一项工作的不同方法数为54

B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为

C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为

D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)x210x(万元).当年产量不小于80千件时,C(x)51x1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;

2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,.

1)求证:数列是等比数列;

2)求数列的通项公式;

3)设,若对任意,有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,曲线的参数方程为为参数),以轴的非负半轴为极轴,原点为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线 分别与曲线相交于两点(两点异于坐标原点).

(1)求曲线的普通方程与两点的极坐标;

(2)求直线的极坐标方程及的面积.

查看答案和解析>>

同步练习册答案