精英家教网 > 高中数学 > 题目详情
14.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“若x=y,则sinx=siny”的逆否命题为假命题
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.△ABC中,A>B是sinA>sinB的充分必要条件.

分析 写出原命题的否命题,可判断A;判断原命题的真假,根据互为逆否的两个命题真假性相同,可判断B;写出原命题的否定命题,可判断C;根据正弦定理和充要条件的定义,可判断D.

解答 解:命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,故A错误;
命题“若x=y,则sinx=siny”是真命题,故其逆否命题为真命题,故B错误;
命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1≥0”,故C错误;
△ABC中,A>B?a>b?2RsinA>2RsinB?sinA>sinB,故A>B是sinA>sinB的充分必要条件.故D正确;
故选:D

点评 本题以命题的真假判断与应用为载体,考查了四处命题,命题的否定,充要条件等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,以O为顶点,x轴的非负半轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知A,B的横坐标分别为$\frac{\sqrt{2}}{10},\frac{3}{5}$.
(Ⅰ)求$\frac{si{n}^{2}α+sinαcosα}{sinαcosα-6co{s}^{2}α}$的值;
(Ⅱ)求α+β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=ax+2+1(a>0且a≠1)的图象恒过的定点是(  )
A.(-2,0)B.(-1,0)C.(0,1)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=asinx-bcosx图象的一条对称轴为$x=\frac{π}{3}$,那么$\frac{a}{b}$=(  )
A.$\sqrt{3}$B.1C.$-\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+$\frac{a}{x}+b(a>0)$是奇函数.
(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;
(2)写出函数f(x)的单调区间(不要解答过程,只写结果);
(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP的面积为2,若这样的点P恰好有4个,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线方程为$\frac{x^2}{6}-\frac{y^2}{6}=1$,那么它的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82  81  79  78  95  88  93  84    乙:92  95  80  75  83  80  90  85
(1)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(2)从甲已抽取的8次预赛中随机抽取两次成绩,求这两次成绩中至少有一次高于90的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥β
C.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2
E.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数在区间[0,1]上单调递增的是(  )
A.y=|lnx|B.y=-lnxC.y=2-xD.y=2|x|

查看答案和解析>>

同步练习册答案