精英家教网 > 高中数学 > 题目详情

【题目】在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB的面积为y,yx之间的函数关系式用如图所示的程序框图给出.

(1)写出程序框图中①,,③处应填充的式子.

(2)若输出的面积y值为6,则路程x的值为多少?

【答案】(1)y=2x, y=8, y=24-2x. (2)x=3x=9.

【解析】

(1)先求出定义域,根据点P的位置进行分类讨论,根据三角形的面积公式求出每一段APB的面积与P移动的路程间的函数关系式,即可写出框图中①,,③处应填充的式子.

(2)结合函数的解析式,建立等式,即可求出x的值.

解:(1)由题意,得函数的定义域为

时,

时,

时,.

故程序框图中①,,③处应填充的式子分别为:y=2x, y=8,y=24-2x.

(2)若输出的y值为6,

时,2x=6,解得x=3;

时,24-2x=6, 解得x=9.

综上,输出的面积y值为6,则路程x的值为3或9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学同学的成绩如表:

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同学的成绩x6及这6位同学成绩的标准差s;
(2)若从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间[68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一口袋中装有大小相同的2个白球和4个黑球,每次从袋中任意摸出一个球 .

(1)采取有放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;

(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  )

A. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个

B. 与去年同期相比,2017年第一季度五个省的总量均实现了增长

C. 去年同期河南省的总量不超过4000亿元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)是否存在实数,使函数上有最小值2?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形,四边形是梯形, 平面平面, 点的中点.

(1)求证:∥平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·开封一模]已知数列中,,利用下面程序框图计算该数列的项时,若输出的是2,则判断框内的条件不可能是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为轮船的最大速度为15海里小时当船速为10海里小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元假定运行过程中轮船以速度v匀速航行.

k的值;

求该轮船航行100海里的总费用燃料费航行运作费用的最小值.

查看答案和解析>>

同步练习册答案