精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形中,的中点.把沿翻折,使得平面平面

(Ⅰ)求证:

(Ⅱ)求所在直线与平面所成角的正弦值.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】

(Ⅰ)证明空间中两异面直线垂直的常用方法为先证明直线与平面垂直,再证明另一条直线在这个平面内;(Ⅱ)用等体积法求解,或建立空间直角坐标系,利用直线的方向向量和平面的法向量的夹角求解.

解:(Ⅰ)证明:∵的中点,

矩形中,

,则

∵平面平面

平面平面

平面

(Ⅱ)解法一:取的中点,连接,则

∵平面平面,平面平面

平面

设点到平面的距离为

中,,则

,则

所在直线与平面所成角为

,∴

所在直线与平面所成角的正弦值为

解法二:取的中点,连接,则

的中点,连接,则

平面

∴以为原点,所在直线为轴,所在直线为轴,建

立如图所示的空间直角坐标系.

∴设为平面的一个法向量,

所以,令,则

所在直线与平面所成角为

所在直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足

)证明:

)证明:

)若,记数列的前项和为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】m为整数,.整数数列满足:不全为零,且对任意正整数n,均有.证明:若存在整数rs(r>s≥2)使得,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数xR,实数a[0,+∞),e=2.71828…是自然对数的底数,).

(Ⅰ)若fx)≥0在xR上恒成立,求实数a的取值范围;

(Ⅱ)若ex≥lnx+m对任意x0恒成立,求证:实数m的最大值大于2.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内,已知,过直线分别作平面,使锐二面角,锐二面角,则平面与平面所成的锐二面角的余弦值为( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.

1)求椭圆的方程;

2)设过点的动直线与椭圆相交于两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点坐标是的周长为是坐标原点,点满足.

1)求点的轨迹的方程;

2)若互相平行的两条直线分别过定点,且直线与曲线交于两点,直线与曲线交于两点,若四边形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面四边形中,为直角,为等边三角形,现把沿着折起,使得平面与平面垂直,且点M的中点.

1)求证:平面平面

2)若,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的离心率为,点Ma0),N0b),O00),且△OMN的面积为1

1)求椭圆C的标准方程;

2)设ABx轴上不同的两点,点A(异于坐标原点)在椭圆C内,点B在椭圆C外.若过点B作斜率不为0的直线与C相交于PQ两点,且满足∠PAB+QAB180°.证明:点AB的横坐标之积为定值.

查看答案和解析>>

同步练习册答案