【题目】如图,矩形中,,,为的中点.把沿翻折,使得平面平面.
(Ⅰ)求证:;
(Ⅱ)求所在直线与平面所成角的正弦值.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)证明空间中两异面直线垂直的常用方法为先证明直线与平面垂直,再证明另一条直线在这个平面内;(Ⅱ)用等体积法求解,或建立空间直角坐标系,利用直线的方向向量和平面的法向量的夹角求解.
解:(Ⅰ)证明:∵为的中点,
矩形中,,,
∴,则,
∴.
∵平面平面,
平面平面,
∴平面,
∴.
(Ⅱ)解法一:取的中点,连接,,则.
∵平面平面,平面平面,
∴平面,
∴,
设点到平面的距离为,
∴.
在中,,,则,
∴,则.
设所在直线与平面所成角为,
∵,∴,
即所在直线与平面所成角的正弦值为
解法二:取的中点,连接,则,
取的中点,连接,则,
∴平面,
∴以为原点,所在直线为轴,所在直线为轴,建
立如图所示的空间直角坐标系.
则,,,,
∴,,,
∴设为平面的一个法向量,
∴,,
所以,令,则
∴.
设所在直线与平面所成角为,
∴,
即所在直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;
(Ⅱ)若ex≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.
(1)求椭圆的方程;
(2)设过点的动直线与椭圆相交于,两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的两个顶点坐标是,,的周长为,是坐标原点,点满足.
(1)求点的轨迹的方程;
(2)若互相平行的两条直线,分别过定点和,且直线与曲线交于两点,直线与曲线交于两点,若四边形的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,平面四边形中,为直角,为等边三角形,现把沿着折起,使得平面与平面垂直,且点M为的中点.
(1)求证:平面平面;
(2)若,求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0)的离心率为,点M(a,0),N(0,b),O(0,0),且△OMN的面积为1.
(1)求椭圆C的标准方程;
(2)设A,B是x轴上不同的两点,点A(异于坐标原点)在椭圆C内,点B在椭圆C外.若过点B作斜率不为0的直线与C相交于P,Q两点,且满足∠PAB+∠QAB=180°.证明:点A,B的横坐标之积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com