精英家教网 > 高中数学 > 题目详情
已知实数a,b,c,d成等比数列,且对函数y=ln(x+2)-x,当x=b时取到极大值c,则ad等于( )
A.-1
B.0
C.1
D.2
【答案】分析:首先根据题意求出函数的导数为f′(x)=,再结合当x=b时函数取到极大值c,进而求出b与c的数值,再利用等比数列的性质得到答案.
解答:解:由题意可得:函数y=ln(x+2)-x,
所以f′(x)=
因为当x=b时函数取到极大值c,
所以有且ln(b+2)-b=c,
解得:b=-1,c=1.即bc=-1.
因为实数a,b,c,d成等比数列,
所以ad=bc=-1.
故选A.
点评:解决此类问题的关键是熟练掌握导数的作用,即求单调区间,求切线方程,以及求函数的极值与最值等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1,不等式|a+b|≥k|c|恒成立.则实数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足c<b<a且ac<0,则下列选项中一定不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若关于x的不等式|x+1|-|x-2|<a的解集不是空集,求实数a的取值范围;
(2)已知实数a,b,c,满足a+b+c=1,求(a-1)2+2(b-2)2+3(c-3)2最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲已知实数a,b,c满足a2+2b2+3c2=24
①求a+2b+3c的最值;
②若满足题设条件的任意实数a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

同步练习册答案