精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[ ,π],求f(x)的最大值与最小值.

【答案】解:(Ⅰ)函数f(x)=sin2 + sin cos

= + sinx

= sinx﹣ cosx+

=sin(x﹣ )+

由T= =2π,

知f(x)的最小正周期是2π;

(Ⅱ)由f(x)=sin(x﹣ )+

且x∈[ ,π],

≤x﹣

≤sin(x﹣ )≤1,

∴1≤sin(x﹣ )+

∴当x= 时,f(x)取得最大值

x=π时,f(x)取得最小值1.


【解析】(Ⅰ)化函数f(x)为正弦型函数,由T= 求出f(x)的最小正周期;(Ⅱ)根据正弦函数的图象与性质,求出f(x)在x∈[ ,π]上的最大值与最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)++f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”. (I) 已知二次函数f(x)=ax2+2bx﹣3a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(II) 设f(x)=2x+m﹣1是定义在[﹣1,2]上的“局部奇函数”,求实数m的取值范围;
(III) 设f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题类A)以椭圆 +y2=1(a>1)短轴端点A(0,1)为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:

家具名称

书桌

书柜

电脑椅

产值(千元)

4

3

2

问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ +x(a>0).若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣2y=0垂直, (Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案