精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\frac{1}{2}{x^2}$+xlnx-2x的单调递减区间为(0,1).

分析 求出f(x)的导数,令g(x)=x+lnx-1(x>0),求出g(x)的导数,判断单调性,即可得到f′(x)=0的解为x=1;
由f′(x)<0,解不等式可得0<x<1.

解答 解:函数$f(x)=\frac{1}{2}{x^2}+xlnx-2x$的导数为f′(x)=x+1+lnx-2
=x+lnx-1,
令g(x)=x+lnx-1(x>0),
g′(x)=1+$\frac{1}{x}$>0,即g(x)在x>0递增,
由g(1)=0,可得f′(x)=0的解为x=1;
由f′(x)<0,解得0<x<1.
故答案为:(0,1).

点评 本题考查导数的运用:求单调区间,注意运用构造函数的方法判断单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.下列三个图分别是四棱锥A-BCEF的直观图、侧视图、俯视图,在直观图中,侧面ABC⊥底面BCEF,M为AC的中点,侧视图是等边三角形,俯视图是直角梯形,有关数据如图所示.
(1)求证:BM∥面AEF;
(2)求证:AE⊥BM;
(3)求该四棱锥A-BCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某人在早晨6时至7时的某时刻开始晨练,7时至8时的某时刻结束晨练,结果发现晨练结束时与晨练开始时,手表的时针与分针恰好交换位置,这个人共晨练$\frac{720}{13}$分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4,∠PAB=60° 
(I)若PE中点为.求证:AE∥平面PCD;
(Ⅱ)若G是PC的中点,求三棱锥P-BDG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角ABC中,角A、B、C所对的边分别为a,b,c,b=4,c=6,且asinB=2$\sqrt{3}$.
(1)求角A的大小;
(2)若D为BC的中点,求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.近期,双十中学首届游泳比赛在新建成的韩振东游泳馆中举行,在前期报名中,同学们也都表现出了极大的兴趣.为了确保赛事的顺利进行,学校邀请了湖里区游泳协会的相关人员前来协助,还在学校征招了8名同学当志愿者,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合$A=\{x∈R|y=\frac{1}{{\sqrt{x-1}}}\},B=\{y|y=x+\frac{1}{x},x∈R且x≠0\}$,则(CRB)∩A=(  )
A.(1,+∞)B.[-2,2)C.(-2,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an},满足a1=1,an-an-1=n,则a10=(  )
A.45B.50C.55D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设偶函数f(x)=a|x+b|在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系为f(a+1)>f(b-2).

查看答案和解析>>

同步练习册答案