精英家教网 > 高中数学 > 题目详情
已知双曲线E:
x2
a2
-
y2
4
=1(a>0)的中心为原点O,左,右焦点分别为F1,F2,离心率为
3
5
5
,点P是直线x=
a2
3
上任意一点,点Q在双曲线E上,且满足
PF2
QF2
=0.
(1)求实数a的值;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同两点M,N,在线段MN上取异于点M,N的点H,满足
|PM|
|PN|
=
|MH|
|HN|
,证明点H恒在一条定直线上.
考点:直线与圆锥曲线的综合问题,直线的斜率
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设双曲线E的半焦距为c,根据离心率为
3
5
5
,双曲线方程,即可求实数a的值;
(2)设点P(
5
3
 ,t)
,Q(x0,y0),根据
PF2
QF2
=0,点Q(x0,y0)在双曲线E上,可得y02=
4
5
(
x
2
0
-5)
,表示出直线PQ与直线OQ的斜率之积,化简可得结论;
(3)设点H(x,y),且过点P(
5
3
 ,1)
的直线l与双曲线E的右支交于不同两点M(x1,y1),N(x2,y2),则4x12-5y12=204x22-5y22=20,即y12=
4
5
(x12-5)
y22=
4
5
(x22-5)
,设
|PM|
|PN|
=
|MH|
|HN|
,求出坐标之间的关系,化简可得点H恒在定直线4x-3y-12=0上.
解答: (1)解:设双曲线E的半焦距为c,
由题意可得
c
a
=
3
5
5
c2=a2+4.
,解得a=
5

(2)证明:由(1)可知,直线x=
a2
3
=
5
3
,点F2(3,0).
设点P(
5
3
 ,t)
,Q(x0,y0),
因为
PF2
QF2
=0
,所以(3-
5
3
,-t)•(3-x0,-y0)=0

所以ty0=
4
3
(x0-3)

因为点Q(x0,y0)在双曲线E上,所以
x02
5
-
y02
4
=1
,即y02=
4
5
(
x
2
0
-5)

所以kPQkOQ=
y0-t
x0-
5
3
y0
x0
=
y
2
0
-ty0
x
2
0
-
5
3
x0
=
4
5
(
x
2
0
-5)-
4
3
(x0-3)
x02-
5
3
x0
=
4
5

所以直线PQ与直线OQ的斜率之积是定值
4
5

(3)证明:设点H(x,y),且过点P(
5
3
 ,1)
的直线l与双曲线E的右支交于不同两点M(x1,y1),N(x2,y2),则4x12-5y12=204x22-5y22=20,即y12=
4
5
(x12-5)
y22=
4
5
(x22-5)

|PM|
|PN|
=
|MH|
|HN|
,则
PM
PN
 
MH
HN
.

(x1-
5
3
 ,y1-1)=λ(x2-
5
3
 ,y2-1) 
(x-x1 ,y-y1)=λ(x2-x ,y2-y).

整理,得
x1x2=
5
3
 (1-λ),①
y1y2=1-λ,②
x1x2=x(1+λ) ,③ 
y1y2=y(1+λ).,④

由①×③,②×④得
x12-λ2x22=
5
3
(1-λ2)x ,⑤
y12-λ2y22=(1-λ2)y.,⑥

y12=
4
5
(x12-5)
y22=
4
5
(x22-5)
代入⑥,
y=
4
5
×
x12-λ2x22
1-λ2
-4
.                         ⑦
将⑤代入⑦,得y=
4
3
x-4

所以点H恒在定直线4x-3y-12=0上.
点评:本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

P是圆O:x2+y2=4上的动点,过P作x轴的垂线,垂足为Q,若PQ中点M的轨迹记为Γ.
(1)求Γ的方程;
(2)若直线l:y=kx+3与曲线Γ相切,求直线l被圆O截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A(1,2)是抛物线C:y2=2px(p>0)上一点,经过点B(5,-2)的直线l与抛物线C交于P,Q两点.
(Ⅰ)求证:
PA
QA
为定值;
(Ⅱ)若点P,Q与点A不重合,问△APQ的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为e=
2
2
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+
2
=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F1(-1,0),F2(1,0),若过F1的直线交曲线C于A、B两点,求
F2A
F2B
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1,a3=b3,a7=b5
(Ⅰ)比较a15与b7的大小关系,并给出证明.
(Ⅱ)是否存在正整数m,n,使得an=bm?若存在,求出m,n之间所满足的关系式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知F1,F2分别是椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,椭圆G与抛物线y2=-4x有一个公共的焦点,且过点(-
6
2
,1
).
(Ⅰ)求椭圆G的方程;
(Ⅱ)设点P是椭圆G在第一象限上的任一点,连接PF1,PF2,过P点作斜率为k的直线l,使得l与椭圆G有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,试证明
1
kk1
+
1
kk2
为定值,并求出这个定值;
(Ⅲ)在第(Ⅱ)问的条件下,作F2Q⊥F2P,设F2Q交l于点Q,证明:当点P在椭圆上移动时,点Q在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知M(0,
3
),N(0,-
3
),平面上一动点P满足|PM|+|PN|=4,记点P的轨迹为P.
(1)求轨迹P的方程;
(2)设过点E(0,1)且不垂直于坐标轴的直线l1:y=kx+b1与轨迹P相交于A,B两点,若y轴上存在一点Q,使得直线QA,QB关于y轴对称,求出点Q的坐标;
(3)是否存在不过点E(0,1),且不垂直坐标轴的直线l,它与轨迹P及圆E:x2+(y-1)2=9从左到右依次交于C,D,F,G四点,且满足
.
ED
-
.
EC
=
.
EG
-
.
EF
?若存在,求出当△OCG的面积S取得最小值时k2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线的中心在坐标原点O,A,C分别是双曲线虚轴的上下顶点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则∠BDF的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设经过抛物线C的焦点的直线l与抛物线C交于A、B两点,那么抛物线C的准线与以AB为直径的圆的位置关系为(  )
A、相离B、相切
C、相交但不经过圆心D、相交且经过圆心

查看答案和解析>>

同步练习册答案