精英家教网 > 高中数学 > 题目详情
已知:函数y=f(x),x∈R,满足f(1)=2,f(x+y)=f(x)*f(y),且f(x)是增函数,
(1)证明:f(0)=1;
(2)若f(2x)*f(x2-1)≥4成立,求x的取值范围.
(1)由题意可令x=y=0,代入f(x+y)=f(x)×f(y),得f(0)=f(0)*f(0),
解得f(0)=0或f(0)=1,
若f(0)=0,令x=1,y=0,则有f(1+0)=f(1)×f(0)=0,这与f(1)=2矛盾,故 f(0)=1
(2)由题意f(2x)×f(x2-1)≥4可变为f(x2-1+2x)≥4=2×2=f(1)×f(1)=f(2),
又f(x)是增函数
故有x2-1+2x≥2,整理得x2-3+2x≥0
解得x≥1或x≤-3
所以x的取值范围是x≥1或x≤-3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知底角为60°的等腰梯形ABCD,底边BC长为7cm,腰长为4cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出直线l左边部分的面积y与x的函数关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设,函数
⑴当时,求的值域;
⑵试讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f(
1
3
)的值;
(2)若满足f(x)+f(x-8)≤2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
x2
2-x
x∈[0,1]
x∈(1,2]
,则
2
0
f(x)dx=(  )
A.
3
4
B.
4
5
C.
5
6
D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若命题“恒成立”是真命题,则实数a的取值范围是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,设定点A(a,a),P是函数(x>0)图像上一动点,若点P,A之间的最短距离为,则满足条件的实数a所有值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则实数k的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则(  )
A.a>0,4a+b=0B.a<0,4a+b=0
C.a>0,2a+b=0D.a<0,2a+b=0

查看答案和解析>>

同步练习册答案