精英家教网 > 高中数学 > 题目详情
10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)若θ=120°,求二面角C-PB-A的大小的余弦值.

分析 (Ⅰ)取PA中点F,连结BF,推导出四边形BCEF是平行四边形,由此能证明CE∥平面PAB.
(Ⅱ)推导出AC⊥BC,以A为坐标原点,建立空间直角坐标系,利用向量法能求出二面角C-PB-A的平面角的余弦值.

解答 证明:(Ⅰ)取PA中点F,连结BF,
∵E为PD中点,∴$EF\underline{\underline{∥}}\frac{1}{2}AD$
又由已知$BC\underline{\underline{∥}}\frac{1}{2}AD$,∴$EF\underline{\underline{∥}}BC$,
从而四边形BCEF是平行四边形…(3分)
∴EC∥BF,
又EC?平面PAB,BF?平面PAB,
∴CE∥平面PAB.…(7分)
解:(Ⅱ)∵AB=2,BC=1,∠ABC=60°,∴AC⊥BC,
如图所示以A为坐标原点,建立空间直角坐标系,
则A(0,0,0),B(-1,$\sqrt{3}$,0),P(0,0,2),C(0,$\sqrt{3}$,0),
设平面PAB的法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
则$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{AB}=0\\ \overrightarrow{n_1}•\overrightarrow{AP}=0\end{array}\right.⇒\left\{\begin{array}{l}-{x_1}+\sqrt{3}{y_1}=0\\ 2{z_1}=0\end{array}\right.$,
解得一个法向量为$\overrightarrow{n_1}=(\sqrt{3},1,0)$…(10分)
设平面CPB的法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
则$\left\{\begin{array}{l}\overrightarrow{n_2}•\overrightarrow{PB}=0\\ \overrightarrow{n_2}•\overrightarrow{PC}=0\end{array}\right.⇒\left\{\begin{array}{l}-{x_2}+\sqrt{3}{y_2}-2{z_2}=0\\ \sqrt{3}{x_2}-2{y_2}=0\end{array}\right.$,
解得一个法向量为$\overrightarrow{n_2}=(0,2,\sqrt{3})$,…(13分)
∵$cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}|•|{\overrightarrow{n_2}}|}}=\frac{{\sqrt{7}}}{7}$,
∴二面角C-PB-A的平面角的余弦值$\frac{{\sqrt{7}}}{7}$.…(15分)

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以正三棱柱的顶点为顶点的四面体共有12个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|ax2-2x+1=0}
(1)若A中有两个元素,求a的取值范围;
(2)若A中至少有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求证:AA1⊥AC;
(2)求点B到面ACC1A1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,AB=1,AD=AS=2,P是棱SD上一点,且$SP=\frac{1}{2}PD$.
(1)求直线AB与CP所成角的余弦值;
(2)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥外接球的半径为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x|x2-a|,若存在x∈[1,2],使得f(x)<2,则实数a的取值范围是(-1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)的图象如图所示,f′(x)为函数f(x)的导函数.则下列数值排序正确的是(  )
A.f′(3)<f′(4)<f(4)-f(3)<0B.f′(3)<f(4)-f(3)<f′(4)<0C.f′(4)<f(4)-f(3)<f′(3)<0D.f(4)-f(3)<f′(4)<f′(3)<0

查看答案和解析>>

同步练习册答案