精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的三棱锥中,分别是的中点

1求证:平面

2为正三角形,且上的一点,,求直线与直线所成角的正切值

【答案】1证明见解析;2

【解析】

试题分析:1借助题设条件运用线面平行的判定定理求解;2借助题设运用异面直线所成角的定义找出其角,再运用解三角形的方法求解

试题解析:

1的中点,连接

中,因为分别为的中点,

所以平面平面

所以平面

在矩形中,因为分别为的中点,

所以平面 平面,所以平面

因为,所以平面平面

因为平面,所以平面

2因为三棱柱为直三棱柱,所以平面平面

连接,因为为正三角形,中点,所以,所以平面

的中点,连接,可得,故平面

又因为,所以

所以即为直线与直线所成角

,在中,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设L为曲线Cy在点(1,0)处的切线.

(1)L的方程;

(2)证明:除切点(1,0)之外,曲线C在直线L的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=9A(-5,0)直线l:x-2y=0.

(1)求与圆C相切且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点)存在定点B(不同于点A)满足:对于圆C上任一点P都有一常数,试求所有满足条件的点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)对于曲线上的不同两点,如果存在曲线上的点,且使得曲线在点处的切线,则称为弦的伴随直线,特别地,当时,又称—伴随直线.

①求证:曲线的任意一条弦均有伴随直线,并且伴随直线是唯一的;

②是否存在曲线,使得曲线的任意一条弦均有—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班有男同学45名,女同学15名,老师按照分层抽样的方法抽取4人组建了一个课外兴趣小组.

(I)求课外兴趣小组中男、女同学的人数;

(II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选出一名同学做实验,求选出的两名同学中恰有一名女同学的概率;

(III)在(II)的条件下,第一次做实验的同学A得到的实验数据为38,40,41,42,44,第二次做实验的同学B得到的实验数据为39,40,40,42,44,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

(1函数上的偶函数为事件,求事件的概率;

(2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x1)f(x)=-2x1f(2)15.

(1)求函数f(x)的解析式;

(2) g(x)(22m)xf(x)

若函数g(x)x[02]上是单调函数求实数m的取值范围;

求函数g(x)x[02]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴一个端点到右焦点的距离为.

1 求椭圆的方程;

2 设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12已知是定义在 上的奇函数,且,当,时,有成立

判断 上的单调性,并加以证明;

对所有的恒成立,求实数m的取值范围

查看答案和解析>>

同步练习册答案