精英家教网 > 高中数学 > 题目详情

【题目】已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直. (Ⅰ) 若 ,且点P在函数 的图象上,求直线l的一般式方程;
(Ⅱ) 若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.

【答案】解:(Ⅰ)点P在函数 的图象上, ,即点

由x+2y+4=0,得 ,即直线l0的斜率为

又直线l与直线l0垂直,则直线l的斜率k满足: ,即k=2,

所以直线l的方程为 ,一般式方程为:2x﹣y+1=0.

(Ⅱ)点P(m,n)在直线l0上,所以m+2n+4=0,即m=﹣2n﹣4,

代入mx+(n﹣1)y+n+5=0中,整理得n(﹣2x+y+1)﹣(4x+y﹣5)=0,

,解得

故直线mx+(n﹣1)y+n+5=0必经过定点,其坐标为(1,1)


【解析】(Ⅰ)点P在函数 的图象上,可得点 ,利用相互垂直的直线斜率之间的关系即可得出.(Ⅱ)点P(m,n)在直线l0上,可得m+2n+4=0,即m=﹣2n﹣4,代入mx+(n﹣1)y+n+5=0中,整理得n(﹣2x+y+1)﹣(4x+y﹣5)=0,由 ,解得即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)= 是奇函数.
(1)讨论函数y=f(x)的单调性;
(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=(
A.
B.3
C.
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m
(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ax2﹣2x(a<0)
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若a=﹣ 且关于x的方程f(x)=﹣ x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中a为非零实数),且方程 有且仅有一个实数根. (Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ .且f(1)=5.
(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在(2,+∞)上的单调性并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为 的圆C,其圆心在射线y=﹣2x(x<0)上,且与直线x+y+1=0相切.
(1)求圆C的方程;
(2)从圆C外一点P(x0 , y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在雅安发生地震灾害之后,救灾指挥部决定建造一批简易房,供灾区群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1)设房前面墙的长为x,两侧墙的长为y,一套简易房所用材料费为p,试用x,y表示p;
(2)一套简易房面积S的最大值是多少?当S最大时,前面墙的长度是多少?

查看答案和解析>>

同步练习册答案