精英家教网 > 高中数学 > 题目详情

【题目】抛物线的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N,则 的最大值为__________

【答案】1

【解析】

设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=

(a+b)2﹣3ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.

设|AF|=a,|BF|=b,

由抛物线定义,得AF|=|AQ||BF|=|BP|

在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.

由余弦定理得,

|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab

配方得,|AB|2=(a+b)2﹣3ab,

又∵ab2

(a+b)2﹣3ab(a+b)2(a+b)2=(a+b)2

得到|AB|≥(a+b).

1,即的最大值为1.

故答案为:1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的标准方程为该椭圆经过点,且离心率为

(1)求椭圆的标准方程;

(2)过椭圆长轴上一点作两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C(ab0)过点,离心率为.

1)求椭圆C的方程;

2)若斜率为的直线l与椭圆C交于AB两点,试探究是否为定值?若是定值,则求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列不等式的证法,再解决后面的问题:

已知,求证:.

证明:构造函数

.

因为对一切,恒有

所以,从而得.

1)若,请写出上述结论的推广式;

2)参考上述证法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)若,求证:函数为奇函数;

2)若,判断并证明函数的单调性;

3)若,函数在区间上的取值范围是,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 为真命题,则为真命题 B. 恒成立

C. 命题“”的否定是“ D. 命题“若”的逆否命题是“若,则

查看答案和解析>>

同步练习册答案