精英家教网 > 高中数学 > 题目详情
8.已知sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,则cos(α-β)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 对已知条件sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,两边平方再相加即可得到答案.

解答 解:∵sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,
∴(cosα-cosβ)2=$\frac{1}{4}$,(sinα-sinβ)2=$\frac{7}{4}$-$\sqrt{3}$.
两式相加,得2-2cos(α-β)=2-$\sqrt{3}$.
∴cos(α-β)=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题主要考查两角和与差的余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若集合A={x|x<3},B={x|x>0},则A∪B=(  )
A.{x|0<x<3}B.{x|x>0}C.{x|x<3}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动点M到定点F(1,0)的距离与点M到定直线m:x=2的距离之比为$\frac{\sqrt{2}}{2}$
(1)求动点M的轨迹C的方程;
(2)设过定点A(0,2)的动直线l(斜率存在)与C相交于P,Q两点,以线段PQ为直径的圆,若定点F在此圆内,求出满足条件的直线l的斜率范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆锥的高PO=4,底面半径OB=2,E为母线PB的中点,C为底面圆周上一点,满足OB⊥OC,F为弧BC上一点,且∠BOF=$\frac{π}{3}$.
(1)求证EF∥平面POC;
(2)求三棱锥E-OCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在网格中粗线显示的为某几何体的三视图(正方形网格的边长为1),则该几何体的体积为(  )
A.5B.6C.6.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$,则z=x-2y的最小值是(  )
A.0B.$\frac{3}{2}$C.-2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}各项均为正数,其前n项和为Sn,且满足$4{S_n}=a_n^2+2{a_n}({n∈{N^*}})$,则an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则$|\overrightarrow{OM}+\overrightarrow{ON}|$的范围为[0.$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆x2+y2-2x+4y-3=0上的点到直线x-y+5=0的距离的取值范围为(2$\sqrt{2}$,6$\sqrt{2}$).

查看答案和解析>>

同步练习册答案