【题目】甲、乙二人进行一场比赛,该比赛采用三局两胜制,即先获得两局胜利者获得该场比赛胜利.在每一局比赛中,都不会出现平局,甲获胜的概率都为.
(1)求甲在第一局失利的情况下,反败为胜的概率;
(2)若,比赛结束时,设甲获胜局数为,求其分布列和期望;
(3)若甲获得该场比赛胜利的概率大于甲每局获胜的概率,求的取值范围.
科目:高中数学 来源: 题型:
【题目】在等比数列中,已知设数列的前n项和为,且
(1)求数列通项公式;
(2)证明:数列是等差数列;
(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内且在圆外的区域,其中,,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.
(1)求的长(用表示);
(2)对于任意,上述设计方案是否均能符合要求?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人口平均预期寿命是综合反映人们健康水平的基本指标.年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.下图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是( )
A.男性的平均预期寿命逐渐延长
B.女性的平均预期寿命逐渐延长
C.男性的平均预期寿命延长幅度略高于女性
D.女性的平均预期寿命延长幅度略高于男性
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数在[1,2]上有且仅有3个零点,其图象关于点和直线x对称,给出下列结论:
①;
②函数f(x)在[0,1]上有且仅有3个极值点;
③函数f(x)在上单调递增;
④函数f(x)的最小正周期是2.
其中所有正确结论的编号是( )
A.②③B.①④C.②③④D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2x+ax2.
(1)当a=1时,求f(x)的导函数在上的零点个数;
(2)若关于x的不等式2cos(2sinx)+a2x2≤af(x)在(﹣∞,+∞)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线是过点的动直线,当与圆相切时,同时也和抛物线相切.
(1)求抛物线的方程;
(2)直线与抛物线交于不同的两点,与圆交于不同的两点A、B,面积为,面积为,当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,已知方程(为常数)在上恰有三个根,分别为,下述四个结论:
①当时,的取值范围是;
②当时,在上恰有2个极小值点和1个极大值点;
③当时,在上单调递增;
④当时,的取值范围为,且
其中正确的结论个数为( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com