精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,则
a1
d
的值为
 
考点:等比数列的性质,等差数列的性质
专题:计算题,等差数列与等比数列
分析:由等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,可得(a1+2d)2=a1(a1+6d),利用d≠0,可得a1=2d,即可求出
a1
d
的值.
解答: 解:∵等差数列{an}的公差d不为0,且a1,a3,a7成等比数列,
∴(a1+2d)2=a1(a1+6d),
∵d≠0,
∴a1=2d,
a1
d
=2,
故答案为:2.
点评:本题考查等差数列的通项,考查等比数列的性质,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)的左焦点与抛物线y2=-12x的焦点重合,则此双曲线的渐近线方程是(  )
A、y=±
2
4
x
B、y=±
10
10
x
C、y=±2
2
x
D、y=±
10
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|,g(x)=2x2+3ax+1,其中a>0.
(1)若f(x)在x≥1上是单调函数,求a的取值范围;
(2)若f(0)=g(0),求函数h(x)=f(x)+g(x),x≥1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果是(  ) 
 
A、
1
6
B、
25
24
C、
3
4
D、
11
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线ρ=2sinθ与ρsinθ-ρcosθ=2相交于点A、B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1,x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f(
x1+x2
2
)

f(x2)-f(x1)
x2-x1
>0.
其中正确结论的序号是
 
.(把所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

空间直线a、b、c,平面α,则下列命题中真命题的是(  ):
A、若a⊥b,c⊥b,则a∥c
B、若a∥c,c⊥b,则b⊥a
C、若a与b是异面直线,a与c是异面直线,则b与c也是异面直线.
D、若a∥α,b∥α,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=1.270.2,b=log0.3(tan46°),c=2sin29°,则a,b,c的大小关系是(  )
A、a>b>c
B、c>a>b
C、b>a>c
D、a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
,则z=x2-2y2最大值为
 

查看答案和解析>>

同步练习册答案