精英家教网 > 高中数学 > 题目详情

 如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;

(Ⅱ) 求的取值范围.

 

【答案】

(Ⅰ) (Ⅱ) [).

【解析】

试题分析:(Ⅰ) 设F2(c,0),则

所以

c=1.

因为离心率e=,所以

a=

所以椭圆C的方程为

.     

(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0)

当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).

 得

(x1+x2)+2(y1+y2)=0,

则-1+4mk=0,

故k=

此时,直线PQ斜率为,PQ的直线方程为

即     

联立 消去y,整理得

.所以

于是

(x1-1)(x2-1)+y1y2

 

令t=1+32m2,1<t<29,则

又1<t<29,所以

综上,的取值范围为[).

考点:直线与椭圆的位置关系 椭圆的几何性质

点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,F1,F2是离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,直线l:x=-
1
2
将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,F1,F2是离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,直线l:x=-
1
2
将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省临海市高三第三次模拟理科数学试卷(解析版) 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;

(Ⅱ) 求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西南昌10所省高三第二次模拟突破冲刺理科数学(一)(解析版) 题型:解答题

如图,F1,F2是离心率为的椭圆

C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.

(Ⅰ) 求椭圆C的方程;

(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案