如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.
(Ⅰ) (Ⅱ) [,).
【解析】
试题分析:(Ⅰ) 设F2(c,0),则
=,
所以
c=1.
因为离心率e=,所以
a=.
所以椭圆C的方程为
.
(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0)
.
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
由 得
(x1+x2)+2(y1+y2)=0,
则-1+4mk=0,
故k=.
此时,直线PQ斜率为,PQ的直线方程为
.
即 .
联立 消去y,整理得
.所以
,.
于是
(x1-1)(x2-1)+y1y2
.
令t=1+32m2,1<t<29,则
.
又1<t<29,所以
.
综上,的取值范围为[,).
考点:直线与椭圆的位置关系 椭圆的几何性质
点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
科目:高中数学 来源: 题型:
| ||
2 |
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
2 |
x2 |
a2 |
y2 |
b2 |
1 |
2 |
F2P |
F2Q |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省临海市高三第三次模拟理科数学试卷(解析版) 题型:解答题
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西南昌10所省高三第二次模拟突破冲刺理科数学(一)(解析版) 题型:解答题
如图,F1,F2是离心率为的椭圆
C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com