精英家教网 > 高中数学 > 题目详情
在边长为2的正方形ABCD中,若E是CD的中点,则
AD
BE
=
 
分析:由题意在边长为2的正方形ABCD中,若E是CD的中点,建立图示的平面直角坐标系,写出各点的坐标,并利用向量的内积的坐标表示法求出.
解答:解:由题意建立图示的平面直角坐标系画图为:
精英家教网
则A(0,0),D(2,0),C(2,2)B(0,2)又E是CD的中点,所以E(2,1),
所以
AD
=(2,0)
BE
=(2,-1)
.所以
AD
BE
=2×2+0×(-1)=4.
故答案为:4.
点评:此题考查了由题意建立平面直角坐标系,利用图形特点求出要求的两个向量的坐标,还考查了向量的内积用坐标表示及学生的数形结合的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.
精英家教网
(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,△ABM的面积为S.
(1)求函数S=f(x)的解析式、定义域和值域;
(2)求f[f(3)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图(a)所示,在边长为2的正方形ABB1A1中,C,C1分别是AB,A1B1的中点,现将正方形ABB1A1沿CC1折叠,使得平面ACC1A1⊥平面CBB1C1,连接AB,A1B1,AB1,如图(b)所示,F是AB1的中点,E是CC1上的点.
(1)当E是棱CC1中点时,求证:EF⊥平面ABB1A1
(2)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小为45°?若存在,求CE的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为2的正方形中,有一个封闭曲线围成的阴影区域D,现用随机模拟的方法进行了100次试验,统计出落入区域D内的随机点共有60个,则估计区域D的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为2的正方形SG1G2G3中,F,E分别是G1G2,G2G3的中点,现沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合点记为G,则四面体S-EFG的体积是(  )

查看答案和解析>>

同步练习册答案