精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围为(
A.(﹣1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.[﹣1,1]

【答案】B
【解析】解:作函数f(x)的图象如下,

∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4

∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,

0<x3<1<x4

则|log2x3|=|log2x4|,

即﹣log2x3=log2x4

则log2x3+log2x4=0

即log2x3x4=0

则x3x4=1;

当|log2x|=1得x=2或

则1<x4<2; <x3<1;

故x3(x1+x2)+ =﹣2x3+ <x3<1;

则函数y=﹣2x3+ ,在 <x3<1上为减函数,

则故x3= 取得最大值,为y=1,

当x3=1时,函数值为﹣1.

即函数取值范围是(﹣1,1).

故选:B.

【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为 ,且过D(2,0).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,点A(1,0),求线段PA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x+m3﹣x为奇函数.
(1)求函数g(x)=f(x)﹣ 的零点;
(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,P,Q分别是AA1 , B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1
(2)若AB=AA1 , BC=3,AC1=3,BC1= ,求证:平面ABC1⊥平面AA1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求数列{bn}的通项公式;
(2)求数列{bn3n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.
(1)求f( )的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是(
A.y=ax2+bx+c
B.y=aex+b
C.y=aax+b
D.y=alnx+b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos = ,bccosA=3. (Ⅰ)求△ABC的面积;
(Ⅱ)若 ,求a的值.

查看答案和解析>>

同步练习册答案