精英家教网 > 高中数学 > 题目详情

【题目】如图,在圆锥中,已知,⊙O的直径,点C在底面圆周上,且的中点.

(Ⅰ)证明:∥平面

(Ⅱ)证明:平面平面

(Ⅲ)求二面角的正弦值.

【答案】(Ⅰ)见解析(Ⅱ)见解析 (Ⅲ)

【解析】

(Ⅰ)要证∥平面转证即可;

(Ⅱ)由题意易得,从而平面,即可得到结果;

(Ⅲ)由(Ⅱ)知,平面平面,在平面中,过,则平面。过,垂足为,连结,则由三垂线定理得,即是二面角的平面角.

证明 :(Ⅰ)∵的中点,的圆心,则,

平面 平面

∥平面

证明:(Ⅱ)∵的中点,∴ .

底面⊙底面⊙,∴

, 平面,∴平面,

平面,

∴平面平面

(Ⅲ)由(Ⅱ)知,平面平面,在平面中,过

平面。过,垂足为,连结

则由三垂线定理得,

是二面角的平面角.

中, ,

中,可求得,

∴在中,,

.

即二面角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函数f(x)在x=2处取得极值.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:

井号

1

2

3

4

5

6

坐标(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

钻探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;

(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的的值(精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(1)求数列{an}的通项公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为,点分别是棱的中点,点在平面内,点在线段上,若,则的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(Ⅰ)若圆的切线在轴和轴上的截距相等,求此切线的方程;

(Ⅱ)从圆外一点向该圆引一条切线,切点为为坐标原点,且,求使取得最小值的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O为△ABC的外接圆,D为的中点,BD交AC于E.
(Ⅰ)证明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=+k(+lnx)(k为常数).
(1)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当k≥0时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

同步练习册答案