精英家教网 > 高中数学 > 题目详情
(2009•闵行区二模)(理)斜率为1的直线过抛物线y2=2px(p>0)的焦点,且与抛物线交于两点A、B.
(1)若p=2,求|AB|的值;
(2)将直线AB按向量
a
=(-p,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(p,0),D为抛物线y2=2px(p>0)上一动点,是否存在直线l,使得l被以CD为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
分析:(1)由已知条件,得到抛物线的方程,再根据抛物线的定义得到|AB|=x1+x2+p=4p,
(2)设直线l的方程,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量坐标运算,求得
NA
NB
的以N点坐标表示的函数式,利用二次函数求最值的方法,可求得所求的最小值.
(3)对于存在性问题,可先假设存在,即假设满足条件的直线l存在,其方程为x=a,再利用l被以CD为直径的圆截得的弦长恒为定值,求出p,若出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(1)设A(x1,y1),B(x2,y2),p=2时,直线AB:y=x-1,代入y2=4x中
可得:x2-6x+1=0(2分)
则x1+x2=6,由定义可得:|AB|=x1+x2+p=8.(4分)
(2)直线AB:y=x-
p
2
,代入y2=2px(p>0)中,可得:x2-3px+
1
4
p2=0

则x1+x2=3p,x1x2=
p2
4
,设N(x0x0+
p
2
)

NA
=(x1-x0y1-x0-
p
2
),
NB
=(x2-x0y2-x0-
p
2
)

NA
NB
=x1x2-x0(x1+x2)+
x
2
0
+y1y2-(x0+
p
2
)(y1+y2)+(x0+
p
2
)2
(2分)
x1+x2=3p,x1x2=
p2
4
y1y2=-p2y1+y2=2p
(4分)
NA
NB
=2
x
2
0
-4px0-
3
2
p2=2(x0-p)2-
7
2
p2

当x0=p时,
NA
NB
的最小值为-
7
2
p2
.                            (6分)
(3)假设满足条件的直线l存在,其方程为x=a,
设CD的中点为O',l与以CD为直径的圆相交于点P、Q,设PQ的中点为H,
则O'H⊥PQ,O'点的坐标为(
x1+p
2
y1
2
)

|O′P|=
1
2
|CD|=
1
2
(
x
 
1
-p)
2
+y12
=
1
2
x
2
1
+p2

|O′H|=|a-
x1+p
2
|=
1
2
|2a-x1-p|
,(2分)
∴|PH|2=|O'P|2-|O'H|2=
1
4
(
x
2
1
+p2)-
1
4
(2a-x1-p)2
=(a-
p
2
)x1+a(p-a)

∴|PQ|2=(2|PH|)2=4[(a-
p
2
)x1+a(p-a)]
.                    (5分)
a-
p
2
=0
,得a=
p
2
,此时|PQ|=p为定值,
故满足条件的直线l存在,其方程为x=
p
2
,即抛物线的通径所在的直线. (7分)
点评:此题考查抛物线的定义,及向量坐标运算等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量
a
=(-2,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)计算
lim
n→∞
2n2+1
3n(n-1)
=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(理)若函数f(x)=
3x+1  (x≥1)
x-4
x-2
 (x<1).
则f-1(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)若f(x)=
x-4x-2
,则f-1(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)若直线l经过点P(1,2),且法向量为
n
=(3,-4)
,则直线l的方程是
3x-4y+5=0
3x-4y+5=0
(结果用直线的一般式表示).

查看答案和解析>>

同步练习册答案