精英家教网 > 高中数学 > 题目详情
6.已知f(2x)=4x-3,g(x)=x2-2x+5,求:
(1)f(x)的表达式;
(2)f[g(x)]的表达式.

分析 (1)根据f(2x)的解析式,利用换元法求出f(x)的解析式;
(2)用代入法求出f[g(x)]的解析式.

解答 解:(1)∵f(2x)=4x-3
=2•2x-3,
∴f(x)=2x-3;
(2)∵g(x)=x2-2x+5,
∴f[g(x)]=f[x2-2x+5]
=2(x2-2x+5)-3
=2x2-4x+7.

点评 本题考查了利用换元法和整体代人思想求函数解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图.已知正方形ABCD与ADEF边长都为1,且平面ADEF⊥平面ABCD,G,H是DF,FC的中点.
(1)求异面直线AF与CE所成角的大小;
(2)求证:GH∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.比较大小$\sqrt{3}$+$\sqrt{4}$与$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线y=kx-1(k∈R)与圆(x-1)2+y2=4所截得的弦为AB,则|AB|的最小值是(  )
A.2$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用描述法表示下列集合:
(1)正偶数集;
(2)被3除余2的正整数集合;
(3)平面直角坐标系中坐标轴上的点组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点.
(1)求证:A、M、A1、C1四点共面;
(2)求证:C1、O、M三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:实数x满足x2-4ax+3a2<0,其中a<0.命题q:实数x满足x2+3x+2≤0.若¬p是¬q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=-$\frac{1}{3}$x3+x在(a,17-a2)上有最大值,则实数a的取值范围是(-4,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设 m、n是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若m∥n,n?α,则m∥αB.若m∥α,n?α,则m∥nC.若m⊥n,n?α,则m⊥αD.若m⊥α,m∥n,则n⊥α

查看答案和解析>>

同步练习册答案