精英家教网 > 高中数学 > 题目详情

设数列满足
(1)求数列的通项;
(2)设,求数列的前项和

(1)(2)

解析试题分析:(1)由所给等式写出当时的情况,两式作差可得数列的通项;(2)结合(1)可得的通项公式,用错位相减法可得前和公式.
试题解析:
解:(1)           ①
       ②
②-①得      ∴
由①得,经验证也满足上式,   ∴.            6分
(2)
            ③
          ④
③-④得:
.                        14分
考点:数列的通项公式,错位减法求前n项和公式,等比数列的前n 项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足:,其中.
(1)求证:数列是等比数列;
(2)令,求数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和和通项满足
(1)求数列的通项公式;
(2)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,等比数列的前n项和为,数列的前n项为,且前n项和满足
(1)求数列的通项公式:
(2)若数列前n项和为,问使的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=﹣18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 数列满足: 
(1)求证:数列是等比数列(要指出首项与公比);
(2)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知.
(1)求数列的通项公式;
(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn,记数列{cn}的前n项和Tn.若对?n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案