设数列满足,.
(1)求数列的通项;
(2)设,求数列的前项和.
科目:高中数学 来源: 题型:解答题
(2013•湖北)已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=﹣18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn=,记数列{cn}的前n项和Tn.若对?n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com