精英家教网 > 高中数学 > 题目详情
19.已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=$\frac{-g(x)+a}{2g(x)+b}$是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性(直接写出结论不用证明 )
(3)若对任意的t∈[0,1],不等式f(t2-2t)+f(2t2-k)>0恒成立,求实数k的取值范围.

分析 (1)利用函数奇偶性的性质建立方程关系即可求a,b的值;
(2)函数f(x)是R是上的单调递减函数.
(3)根据函数解析式求出函数的单调性,利用参数分离法进行求解即可

解答 解:(1)设g(x)=mx(m>0,m≠1)∵g(2)=4,∴m2=4,∴m=2,∴g(x)=2x
∴f(x)=$\frac{-{2}^{x}+a}{2•{2}^{x}+b}$,
∵定义域为R的函数f(x)=$\frac{-g(x)+a}{2g(x)+b}$是奇函数,
∴$\left\{\begin{array}{l}{f(0)=0}\\{f(-1)=-f(1)}\end{array}\right.$,∴$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$.
(2)函数f(x)是R上的单调递减函数.
(3)∵f(2t2-2t)+f(2t2-k)>0对于任意的t∈[0,1]恒成立,
∴f(t2-2t)>-f(2t2-k).
∵定义域为R的函数f(x)是奇函数,
∴f(t2-2t)>f(k-2t2).
∵函数f(x)是R上的减函数,∴t2-2t<k-2t2
∴k>3t2-2t=2(t-$\frac{1}{3}$)2-$\frac{1}{3}$对于任意的t∈[0,1]恒成立,
令H(x)=3t2-2t  t∈[0,1],
只需k>H(x)的最大值即可,
H(x)的最大值为H(1)=1,
∴k>1.

点评 本题主要考查函数奇偶性的应用,以及不等式恒成立,利用函数奇偶性的定义建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是(  )
A.1mmB.2mmmC.3mmD.4mm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={x|1≤x≤6,x∈Z},集合A={1,3,4},集合B={2,4},则(∁UA)∪B=(  )
A.{1,2,4,6}B.{2,3,4,6}C.{2,4,5,6}D.{2,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$.
(1)化简f(α),并求f(-$\frac{67π}{6}$);
(2)若f(α )=$\frac{2}{5}$,求cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三棱锥的棱长均为4$\sqrt{6}$,顶点在同一球面上,则该球的表面积为(  )
A.36πB.72πC.144πD.288π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求值:
(1)lg52+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2
(2)log89•log2732-($\sqrt{3-1}$)lg1+log535-log57.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列各题:
(1)计算:${({\sqrt{1000}})^{-\frac{2}{3}}}×{({\root{3}{{{{10}^2}}}})^{\frac{9}{2}}}$;             
(2)计算lg20+log10025;
(3)求函数$f(x)=\sqrt{1-{{log}_2}(4x-5)}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=2${\;}^{\frac{1}{3}}$,b=log3$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知在各项为正的数列{an}中,a1=1,a2=2,log2an+1+log2an=n(n∈N*),则a1+a2+…+a2016-3×21008=-3.

查看答案和解析>>

同步练习册答案