精英家教网 > 高中数学 > 题目详情
13.若关于x的不等式|x-2|+|x-2a|<6的解集不空,则a的取值范围是(-2,4).

分析 由条件利用绝对值三角不等式求得|x-2|+|x-2a|≥2|a-1|,再根据2|a-1|<6,求得a的范围.

解答 解:∵|x-2|+|x-2a|≥|2a-2|=2|a-1|,关于x的不等式|x-2|+|x-2a|<6的解集不空,
∴2|a-1|<6,求得-2<a<4,
故答案为:(-2,4).

点评 本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数y=-$\frac{1}{3}$x3+ax有三个单调区间,则a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,在(-1,1)上有零点且单调递增的是(  )
A.y=log2(x+2)B.y=2x-1C.y=x2-$\frac{1}{2}$D.y=-x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A,B,C是△ABC的三个内角.
(Ⅰ)已知$\overrightarrow m=(tanA+tanB,\sqrt{3})$,$\overrightarrow n=(1,1-tanAtanB)$,且$\overrightarrow m⊥\overrightarrow n$,求∠C的大小;
(Ⅱ)若向量$\overrightarrow{a}=(\sqrt{2}cos\frac{A+B}{2},sin\frac{A-B}{2})$,且|$\overrightarrow{α}$|=$\frac{\sqrt{6}}{2}$,求证:tanAtanB为定值,并求这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲船在岛A的正南B处,以4km/h的速度向正北航行,AB=10km,同时乙船自岛A出发以6km/h的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为(  )
A.$\frac{150}{7}$minB.$\frac{15}{7}$hC.21.5 minD.2.15 h

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列$\left\{{a_n}\right\}({n∈{N^*}})$的前12项(如表所示),按如此规律下去,则a2015+a2016+a2017=(  )

a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
A.1007B.1008C.1009D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若数列{an}(n∈N*)满足:①an≥0;②an-2an+1+an+2≥0;③a1+a2+…+an≤1,则称数列{an}为“和谐”数列.
(1)已知数列{an},${a_n}=\frac{1}{n(n+1)}$(n∈N*),判断{an}是否为“和谐”数列,说明理由;
(2)若数列{an}为“和谐”数列,证明:${a_n}-{a_{n+1}}<\frac{2}{n^2}$.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}中,an+2=an+1-an,a1=2,a2=5,则a2009=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a∈R,n∈N*,求和:l+a+a2+a3+…+an=$\left\{\begin{array}{l}n+1,\;\;a=1\\ \frac{{1-{a^{n+1}}}}{1-a},\;\;a≠1.\end{array}\right.$.

查看答案和解析>>

同步练习册答案