精英家教网 > 高中数学 > 题目详情
定义在[-1,1]上的奇函数f(x),当-1≤x<0时,f(x)=-
2x
4x+1

(Ⅰ)求f(x)在[-1,1]上解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性,并给予证明;
(Ⅲ)当x∈(0,1]时,关于x的方程
2x
f(x)
-2x+λ=0
有解,试求实数λ的取值范围.
分析:(Ⅰ)由题意可得,f(0)=0,设 x∈(0,1],可得,-x∈[-1,0),结合已知函数解析式及f(x)=-f(-x)即可求解;
(Ⅱ)先设任意x1、x2(0,1],且x1<x2,然后利用作差法比较f(x1),f(x2)的大小即可判断
(Ⅲ)利用换元法,设t=2x,则t∈(1,2],然后结合二次函数在闭区间上的最值求解即可
解答:解:(Ⅰ)∵f(x)是定义在[-1,1]上的奇函数,
∴当x=0时,f(x)=0,…(1分)
当 x∈(0,1]时,-x∈[-1,0),
所以f(x)=-f(-x)=
2x
1+4x
,…(4分)
综上:f(x)=
2x
1+4x
,x∈(0,1]
0,       x=0
-
2x
1+4x
,x∈[-1,0).
.…(5分)
(Ⅱ)证明:任意x1、x2(0,1],且x1<x2
f(x1)-f(x2)=
(2x1-2x2)(1-2x1+x2)
(1+4x1)(1+4x2)

由x1<x2,故2x12x2,又1-2x1+x2<0(1+4x1)(1+4x2)
所以f(x1)>f(x2),
所以f(x)在(0,1)上单调递减.…(9分)
(Ⅲ)λ=2x-1-4x
设t=2x,则t∈(1,2],
λ=-t2+t-1=-(t-
1
2
)2-
3
4
∈[-3,-1)
.…(14分)
点评:本题主要考查了函数的奇偶性在函数解析式求解中的应用,函数的单调性的判断与证明及二次函数闭区间上的最值求解等综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:江苏省泰州市中学高三数学一轮复习过关测试卷:函数(1)(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

同步练习册答案