精英家教网 > 高中数学 > 题目详情
抛物线的顶点为(0,-1),对称轴为y轴,则抛物线的解析式是(  )
A、y=-
1
4
x2+1
B、y=
1
4
x2-1
C、y=4x2-16
D、y=-4x2+16
考点:二次函数的图象
专题:函数的性质及应用
分析:本题主要考查了二次函数的图象的性质,把x=0,分别代入A,B,C,D计算取y的值,即可判断.
解答: 解:∵抛物线的顶点为(0,-1),
∴x=0,y=-1,
而当x=0时,
对于A,y=1,对于B,y=-1,对于C,y=-16,对于D,y=16,
故选:B
点评:本题主要考查了二次函数的图象的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四面体ABCD中,E为AD中点,△ABC与△BCD都是边长为4的正三角形.
(1)求证:AD⊥BC;
(2)若AD=6,求点C到平面BDE的距离;
(3)若点D到平面ABC的距离为3,求二面角A-BC-D的大小;
(4)设二面角A-BC-D的大小为θ,那么θ为何值时,四面体A-BCD的体积最大,最大为多少?此时AD的长是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<
1
3
,则f(x)<
x
3
+
2
3
的解集为(  )
A、{x|-1<x<1}
B、{x|<-1}
C、{x|x<-1或x>1}
D、{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂对一批产品的质量进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图.已知样本中产品净重在[70,75)克的个数是8个.
(Ⅰ)求样本容量;
(Ⅱ)若从净重在[60,70)克的产品中任意抽取2个,求抽出的2个产品恰好是净重在[65,70)的产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
x2
(1)求函数f(x)的极值;
(2)若关于x的方程f(x)+2bx=0在区间(0,e]上恰有两个不同的实根,求实数b的最大值;
(3)若对任意x∈[
1
e
,1],不等式|a-2lnx|+ln[f′(x)+x]>0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D.若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域为[km,kn](k>0),则称函数f(x)是k类函数.设函数f(x)=x3+2x2+x(x≤0)是k类函数,则n-m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(1,0),平面内的动点P满足|PA|=2|PB|.
(1)求点P的轨迹E的方程,并指出其表示的曲线的形状;
(2)求曲线E关于直线l:x+y-m=0对称的曲线E′的方程;
(3)是否存在实数m,使直线l:x+y-m=0与曲线E′交于P、Q两点,且以PQ为直径的圆经过坐标原点O?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l不平行于平面α,且l?α,则(  )
A、α内的所有直线与l异面
B、α内不存在与l平行的直线
C、α内存在唯一的直线与l平行
D、α内的直线与l都相交

查看答案和解析>>

科目:高中数学 来源: 题型:

对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1.
对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B).
又定义S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2
设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果数列A0为2,6,4,8,写出数列A1,A2
(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(Ak+1)=S(Ak).

查看答案和解析>>

同步练习册答案