精英家教网 > 高中数学 > 题目详情
若实数x,y满足不等式组
x+2y-5≥0
2x+y-7≥0
x≥0,y≥0
,若x、y为整数,则3x+4y的最小值为
13
13
分析:由实数x,y满足不等式组
x+2y-5≥0
2x+y-7≥0
x≥0,y≥0
,作出可行域,利用角点法能求出3x+4y的最小值.
解答:解:由实数x,y满足不等式组
x+2y-5≥0
2x+y-7≥0
x≥0,y≥0

作出可行域:

设t=3x+4y,
∵A(0,7),∴zA=3×0+4×7=18;
解方程组
2x+y-7=0
x+2y-5=0
,得B(3,1),∴zB=3×3+4×1=13;
∵C(5,0),∴zC=3×5+4×0=15.
∴3x+4y的最小值为13.
故答案为:13.
点评:本题考查线性规划问题,是基础题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、找出关键点、求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足
f(x1)-f(x2)
x1-x2
<0
,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高三(上)10月月考数学试卷(理科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(文科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2013年山东省淄博市高考数学模拟试卷3(理科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(理科)(解析版) 题型:解答题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

同步练习册答案