精英家教网 > 高中数学 > 题目详情

【题目】众所周知的太极图,其形状如对称的阴阳两鱼互抱在一起,也被称为阴阳鱼太极图.如图是放在平面直角坐标系中的太极图.整个图形是一个圆形.其中黑色阴影区域在y轴右侧部分的边界为一个半圆,给出以下命题:

①在太极图中随机取一点,此点取自黑色阴影部分的概率是

②当时,直线yax+2a与白色部分有公共点;

③黑色阴影部分(包括黑白交界处)中一点(xy),则x+y的最大值为2

④设点P(﹣2b),点Q在此太极图上,使得∠OPQ45°b的范围是[22]

其中所有正确结论的序号是(

A.①④B.①③C.②④D.①②

【答案】A

【解析】

根据几何概型概率计算,判断①的周期性.根据直线和圆的位置关系,判断②的正确性.根据线性规划的知识求得的最大值,由此判断③的正确性.将转化为过的两条切线所成的角大于等于,由此求得的取值范围,进而求得的取值范围,从而判断出④的正确性.

对于①,将y轴右侧黑色阴影部分补到左侧,即可知黑色阴影区域占圆的面积的一半,

根据几何概型的计算公式,所以在太极图中随机取一点,此点取自黑色阴影部分的概率是,正确;

对于②,当时,直线,过点,所以直线与白色部分在第I和第IV象限部分没有公共点.圆的圆心为,半径为,圆心到直线,即直线的距离为,所以直线与白色部分在第III象限的部分没有公共点.综上所述,直线yax+2a与白色部分没有公共点,②错误;

对于③,设lzx+y,由线性规划知识可知,当直线l与圆x2+y121相切时,z最大,

解得z舍去),③错误;

对于④,要使得∠OPQ45°,即需要过点P的两条切线所成角大于等于

所以,即OP≤2,于是22+b2≤8,解得

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于的不等式,对于恒成立,则实数的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xlnx,函数gx)=kxcosx在点处的切线平行于x.

1)求函数fx)的极值;

2)讨论函数Fx)=gx)﹣fx)的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

(1)估计该社区居民最近一年来网购消费金额的中位数;

(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;

合计

网购迷

20

非网购迷

45

合计

100

(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:

网购总次数

支付宝支付次数

银行卡支付次数

微信支付次数

80

40

16

24

90

60

18

12

将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.

附:观测值公式:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面凸六边形的边长相等,其中为矩形,.将,分别沿,折至,,且均在同侧与平面垂直,连接,如图所示,E,G分别是,的中点.

1)求证:多面体为直三棱柱;

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axexgx)=x2+2x+b,若曲线yfx)与曲线ygx)都过点P1c).且在点P处有相同的切线l

(Ⅰ)求切线l的方程;

(Ⅱ)若关于x的不等式k[efx]≥gx)对任意x[1+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,直线过椭圆的左焦点.

1)求椭圆的标准方程;

2)若直线轴交于点是椭圆上的两个动点,的平分线在轴上,.试判断直线是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx|2x3|gx|2x+a+b|.

1)解不等式fxx2

2)当a0b0时,若Fxfx+gx)的值域为[5+∞),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足n≥2时,,则称数列(n)L数列

1)若,且L数列,求数列的通项公式;

2)若,且L数列为递增数列,求k的取值范围;

3)若,其中p1,记L数列的前n项和为,试判断是否存在等差数列,对任意n,都有成立,并证明你的结论.

查看答案和解析>>

同步练习册答案