精英家教网 > 高中数学 > 题目详情

【题目】设ω>0,函数y=sin(ωx+ )+2的图象向右平移 个单位后与原图象重合,则ω的最小值是(
A.
B.
C.
D.3

【答案】C
【解析】解答:将y=sin(ωx+ )+2的图象向右平移 个单位后为 =
所以有 =2kπ,即
又因为ω>0,所以k≥1,

故选C
分析:求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆M: =1(a>b>0)的离心率为 ,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求 的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x+2)的定义域为(0,2),则函数y=f(log2x)的定义域为(
A.(﹣∞,1)
B.(1,4)
C.(4,16)
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C (b>0)的离心率为A(,0) B(0b)O(0,0)OAB的面积为1.

(1)求椭圆C的方程;

(2)设P是椭圆C上一点,直线PAy轴交于点M,直线PBx轴交于点N.求证:|AN|·|BM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设y1=a3x+1 , y2=a2x(a>0,a≠1),确定x为何值时,有:
(1)y1=y2
(2)y1>y2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:(x+1)(x﹣5)≤0,命题q:1﹣m≤x<1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p∨q”为真命题,“p∧q”为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,并根据

(1)写出函数f(x)(x∈R)的增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)﹣2ax+2(x∈[1,2]),求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=|x|,
B.
C. ,g(x)=x+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案