½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÁ½ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£º
a1
a2a3a4
a5a6a7a8a9
¡­
ÒÑÖª±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a5£¬¡­¹¹³ÉÒ»¸öµÈ²îÊýÁУ¬¼ÇΪ{bn}£¬ÇÒb2=4£¬b5=10£®±íÖÐÿһÐÐÕýÖмäÒ»¸öÊýa1£¬a3£¬a7£¬¡­¹¹³ÉÊýÁÐ{cn}£¬ÆäÇ°nÏîºÍΪSn£®
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÈôÉϱíÖУ¬´ÓµÚ¶þÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬¹«±ÈΪͬһ¸öÕýÊý£¬ÇÒa13=1£®¢ÙÇóSn£»¢Ú¼ÇM={n|£¨n+1£©cn¡Ý¦Ë£¬n¡ÊN*}£¬Èô¼¯ºÏMµÄÔªËظöÊýΪ3£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©Éè{bn}µÄ¹«²îΪd£¬Ôò
b1+d=4
b1+4d=10
£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{bn}µÄͨÏʽ£®
£¨2£©¢ÙÉèÿһÐÐ×é³ÉµÄµÈ±ÈÊýÁеĹ«±ÈΪq£¬ÓÉÓÚÇ°nÐй²ÓÐ1+3+5+¡­+£¨2n-1£©=n2¸öÊý£¬ÇÒ32£¼13£¼42£¬½âµÃq=
1
2
£¬cn=2n•(
1
2
)
n-1
=
n
2n-2
£¬ËùÒÔSn=
1
2-1
+
2
20
+
3
2
+¡­+
n
2n-2
£¬ÓÉ´íλÏà¼õ·¨Äܹ»ÇóµÃSn=8-
n+2
2n-2
£®
¢ÚÓÉcn=
n
2n-2
£¬Öª²»µÈʽ£¨n+1£©cn¡Ý¦Ë£¬¿É»¯Îª
n(n+1)
2n-1
¡Ý¦Ë
£¬Éèf(n)=
n(n+1)
2n-2
£¬½âµÃf(1)=4£¬f(2)=f(3)=6£¬f(4)=5£¬f(5)=
15
4
£¬ÓÉ´ËÄܹ»ÍƵ¼³ö¦ËµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©Éè{bn}µÄ¹«²îΪd£¬
Ôò
b1+d=4
b1+4d=10
£¬½âµÃ
b1=2
d=2
£¬¡àbn=2n£®
£¨2£©¢ÙÉèÿһÐÐ×é³ÉµÄµÈ±ÈÊýÁеĹ«±ÈΪq£¬
ÓÉÓÚÇ°nÐй²ÓÐ1+3+5+¡­+£¨2n-1£©=n2¸öÊý£¬ÇÒ32£¼13£¼42£¬
¡àa10=b4=8£¬
¡àa13=a10q3=8q3£¬
ÓÖa13=1£¬½âµÃq=
1
2
£¬
¡àcn=2n•(
1
2
)
n-1
=
n
2n-2
£¬
¡àSn=
1
2-1
+
2
20
+
3
2
+¡­+
n
2n-2
£¬
1
2
Sn=
1
20
+
2
2 
+¡­+
n-1
2 n-2
+
n
2n-1
£¬
¡à
1
2
Sn=
1
2-1
+
1
20
+
1
2
+¡­+
1
2n-2
-
n
2n-1

=4-
n+2
2n-1

½âµÃSn=8-
n+2
2n-2
£®
¢ÚÓÉ¢ÙÖª£¬cn=
n
2n-2
£¬²»µÈʽ£¨n+1£©cn¡Ý¦Ë£¬¿É»¯Îª
n(n+1)
2n-2
¡Ý¦Ë
£¬
Éèf(n)=
n(n+1)
2n-2
£¬½âµÃf(1)=4£¬f(2)=f(3)=6£¬f(4)=5£¬f(5)=
15
4
£¬
¡àn¡Ý3ʱ£¬f£¨n+1£©£¼f£¨n£©£®
¡ß¼¯ºÏMµÄÔªËظöÊýÊÇ3£¬
¡à¦ËµÄÈ¡Öµ·¶Î§ÊÇ£¨4£¬5]£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨡¢Ç°nÏîºÍµÄ¼ÆËãºÍµÈ±ÈÊýÁÐÐÔÖʵÄÓ¦Ó㬽âÌâʱҪעÒâ·½³Ì˼ÏëºÍ´íλÏà¼õÇóºÍ·¨µÄºÏÀíÔËÓã¬×¢ÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã
2bn
bnSn-
S
2
n
=1(n¡Ý2)
£®
£¨1£©ÇóÖ¤ÊýÁÐ{
1
Sn
}
³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±a81=-
4
91
ʱ£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º
¾«Ó¢¼Ò½ÌÍø
¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©Áîcn=2+ban+b•2an-1£¨bΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£®¼Ç±íÖеÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£®SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ã2bn=bnSn-Sn2£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{
1
Sn
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Í¼ÖУ¬Èô´ÓµÚÈýÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±a81=-
4
91
ʱ£¬ÇóÉϱíÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÊýµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

½«ÊýÁÐ{an}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂ±í£º
¼Ç±íÖеĵÚÒ»ÁÐÊýa1£¬a2£¬a4£¬a7£¬¡­£¬¹¹³ÉµÄÊýÁÐΪ{bn}£¬b1=a1=1£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒÂú×ãÊýѧ¹«Ê½£®
£¨1£©ÇóÖ¤ÊýÁÐÊýѧ¹«Ê½³ÉµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÉϱíÖУ¬Èôa81ÏîËùÔÚÐеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈqΪÕýÊý£¬Çóµ±Êýѧ¹«Ê½Ê±£¬¹«±ÈqµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡»´°²ÊкéÔóÖÐѧ¸ß¿¼ÊýѧģÄâÊÔ¾í£¨3£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÕûÊýÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬ÇÒ2an-1£¼an-1+an+1£¼2an+1£¨n¡ÊN£¬n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©½«ÊýÁÐ{an}ÖеÄËùÓÐÏîÒÀ´Î°´ÈçͼËùʾµÄ¹æÂÉÑ­»·µØÅųÉÈçÏÂÈý½ÇÐÎÊý±í£º

¡­
ÒÀ´Î¼ÆËã¸÷¸öÈý½ÇÐÎÊý±íÄÚ¸÷ÐÐÖеĸ÷ÊýÖ®ºÍ£¬ÉèÓÉÕâЩºÍ°´Ô­À´ÐеÄÇ°ºó˳Ðò¹¹³ÉµÄÊýÁÐΪ{bn}£¬Çób5+b100µÄÖµ£»
£¨3£©ÁbΪ´óÓÚµÈÓÚ3µÄÕýÕûÊý£©£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓгɵȱÈÊýÁеÄÁ¬ÐøÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸