精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.
(I)求椭圆的方程;
(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.

(I)         (Ⅱ)  

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆的离心率是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过点的直线与抛物线交于两点,为坐标原点.
(1)若以为直径的圆经过原点,求直线的方程;
(2)若线段的中垂线交轴于点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线围成的矩形的面积为8,
求椭圆的方程;
(2)若为坐标原点),求证:
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线

(I)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知 .
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内动点到点的距离等于它到直线的距离,记点的轨迹为曲
(Ⅰ)求曲线的方程;
(Ⅱ)若点上的不同三点,且满足.证明: 不可能为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,

(Ⅰ)求直线的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,己知直线l与抛物线相切于点P(2,1),且与x轴交于点A,定点B(2,0).

(1)若动点M满足,求点M轨迹C的方程:
(2)若过点B的直线(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

同步练习册答案