分析 (1)依题意可设二次函数f(x)=ax2+bx(a≠0),求出导数,可得a=3,b=-2,可得Sn=3n2-2n,再由数列的通项与求和关系,即可得到所求通项公式;
(2)求得${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$=$\frac{3}{(6n-5)[6(n-1)-5]}$=$\frac{1}{2}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$),运用裂项相消求和可得Tn,再由恒成立思想即可解得m的范围,进而得到最小正整数.
解答 解:(1)依题意可设二次函数f(x)=ax2+bx(a≠0),
则f′(x)=2ax+b,由f′(x)=6x-2,可得a=3,b=-2,则f(x)=3x2-2x
点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
即有Sn=3n2-2n,
当n≥2时,an=Sn-Sn-1=3n2-2n-3(n-1)2+2(n-1)=6n-5;
当n=1时,a1=S1=1也适合,则an=6n-5;
(Ⅱ)由(Ⅰ)知${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$=$\frac{3}{(6n-5)[6(n-1)-5]}$=$\frac{1}{2}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$)
故Tn=$\frac{1}{2}$[(1-$\frac{1}{7}$)+($\frac{1}{7}$-$\frac{1}{13}$)+…+($\frac{1}{6n-5}$-$\frac{1}{6n+1}$)]=$\frac{1}{2}$(1-$\frac{1}{6n+1}$)
因此,要使$\frac{1}{2}$(1-$\frac{1}{6n+1}$)<$\frac{m}{2016}$成立,m必须且仅需满足$\frac{1}{2}$≤$\frac{m}{2016}$,
即m≥1008,故满足要求的最小正整数m为1008.
点评 本题考查二次函数的性质,以及解析式的求法,考查数列的通项公式的求法,注意运用数列的通项和前n项和的关系,考查数列的求和方法:裂项相消求和,以及不等式恒成立其它的解法,注意运用不等式的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1) | B. | (-∞,0)∪(0,1] | C. | (-∞,0)∪(0,1) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com