精英家教网 > 高中数学 > 题目详情
3.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求使得${T_n}<\frac{m}{2016}$对所有的(n∈N*)都成立的最小正整数m.

分析 (1)依题意可设二次函数f(x)=ax2+bx(a≠0),求出导数,可得a=3,b=-2,可得Sn=3n2-2n,再由数列的通项与求和关系,即可得到所求通项公式;
(2)求得${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$=$\frac{3}{(6n-5)[6(n-1)-5]}$=$\frac{1}{2}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$),运用裂项相消求和可得Tn,再由恒成立思想即可解得m的范围,进而得到最小正整数.

解答 解:(1)依题意可设二次函数f(x)=ax2+bx(a≠0),
则f′(x)=2ax+b,由f′(x)=6x-2,可得a=3,b=-2,则f(x)=3x2-2x
点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
即有Sn=3n2-2n,
当n≥2时,an=Sn-Sn-1=3n2-2n-3(n-1)2+2(n-1)=6n-5;
当n=1时,a1=S1=1也适合,则an=6n-5;
(Ⅱ)由(Ⅰ)知${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$=$\frac{3}{(6n-5)[6(n-1)-5]}$=$\frac{1}{2}$($\frac{1}{6n-5}$-$\frac{1}{6n+1}$)
故Tn=$\frac{1}{2}$[(1-$\frac{1}{7}$)+($\frac{1}{7}$-$\frac{1}{13}$)+…+($\frac{1}{6n-5}$-$\frac{1}{6n+1}$)]=$\frac{1}{2}$(1-$\frac{1}{6n+1}$)
因此,要使$\frac{1}{2}$(1-$\frac{1}{6n+1}$)<$\frac{m}{2016}$成立,m必须且仅需满足$\frac{1}{2}$≤$\frac{m}{2016}$,
即m≥1008,故满足要求的最小正整数m为1008.

点评 本题考查二次函数的性质,以及解析式的求法,考查数列的通项公式的求法,注意运用数列的通项和前n项和的关系,考查数列的求和方法:裂项相消求和,以及不等式恒成立其它的解法,注意运用不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.a,b,c是互不相等的正数,且abc=1,求证:(1+a+b)(1+b+c)(1+c+a)>27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果直线l1:2x-y+2=0,l2:8x-y-4=0与x轴正半轴,y轴正半轴围成的四边形封闭区域(含边界)中的点,使函数z=abx+y(a>0,b>0)的最大值为8,求a+b的最小值(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)与函数g(x)=$\frac{2}{1-\sqrt{1-x}}$是相等的函数,则函数f(x)的定义域是(  )
A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3,PB=1,PC=9.设M是底面ABC内一点,定义f(M)=(m、n、p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积,若f(M)=($\frac{1}{2}$,x,y),且$\frac{{x}^{2}}{2}$+y2≥a恒成立,则正实数a的最大值为(  )
A.$\frac{4}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b,c∈R,且abc≠0,已知P:a,b,c成等比数列;Q:b=$\sqrt{ac}$,则P是Q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线x+2y=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1相交于A、B两点,AB中点为M,若直线AB斜率与OM斜率之积为-$\frac{1}{4}$.则椭圆的离心率e的值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}>0$成立.
(1)判断f(x)在[-1,1]上的单调性,并证明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案