精英家教网 > 高中数学 > 题目详情
17.已知中心在原点,焦点在x轴上的双曲线的左右焦点分别记为F1,F2,若P为双曲线的渐近线上一点,若|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{P{F}_{1}}$-$\overrightarrow{P{F}_{2}}$|,且|PF2|=a(a为实半轴长),求双曲线的离心率$\frac{1+\sqrt{3}}{2}$.

分析 运用向量数量积的性质,平方可得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,即有P在以F1F2为直径的圆上,求得渐近线方程和圆方程,解得交点P,再由条件,结合a,b,c的关系和离心率公式及范围,即可得到所求值.

解答 解:若|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{P{F}_{1}}$-$\overrightarrow{P{F}_{2}}$|,
则($\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$)2=($\overrightarrow{P{F}_{1}}$-$\overrightarrow{P{F}_{2}}$)2
化简可得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
即有P在以F1F2为直径的圆上,
设P(m,n),双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
焦点F1(-c,0),F2(c,0),
联立圆x2+y2=c2,和渐近线方程为y=$\frac{b}{a}$x,
解方程不妨设P(a,b),
由|$\overrightarrow{P{F}_{2}}$|=a,即为(a-c)2+b2=a2
由a2+b2=c2,e=$\frac{c}{a}$>1,
化简可得2e2-2e-1=0,
解得e=$\frac{1+\sqrt{3}}{2}$,
故双曲线的离心率为$\frac{1+\sqrt{3}}{2}$.
故答案为:$\frac{1+\sqrt{3}}{2}$.

点评 本题考查向量的数量积的性质,考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=$\sqrt{5-x}$+lg(2x-1)的定义域是(  )
A.($\frac{1}{2}$,5)B.($\frac{1}{2}$,5]C.(-∞,5]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数为(  )
A.$A_5^5A_4^2$B.$A_5^5A_5^2$C.$A_5^5A_6^2$D.$A_7^7-4A_6^6$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:由ax2-bx+c>0⇒a-b($\frac{1}{x}$)+c($\frac{1}{x}$)2>0,令y=$\frac{1}{x}$,则y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集为($\frac{1}{2}$,1).类比上述解法,已知关于x不等式已知关于x的不等式$\frac{k}{x+a}+\frac{x+b}{x+c}$<0解集为(-3,-2)∪(1,2),则关于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集为($\frac{1}{2}$,1)∪(-$\frac{1}{2}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设△ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则r=$\frac{2S}{a+b+c}$;设四面体S-ABC的四个面的面积分别为Si(i=1,2,3,4),内切球的半径为r,体积为V,请类比三角形的上述结论,写出四面体中的结论r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示某程序框图,则输出的n的值是(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某算法的程序框图如图,若输出结果为2,则输入的实数x的值是4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知焦点在x轴上的双曲线的离心率为$\sqrt{3}$,虚轴长为2$\sqrt{2}$.
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,若OA⊥OB,求m的值.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在圆x2+y2=r2中,AB为直径,C为圆上异于A、B的任意一点,则有kAC•kBC=-1.用类比的方法,对于椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),也能得出类似的结论:若设A为椭圆上的任意一点,点A关于椭圆中心的对称点为B,点C为椭圆上异于A、B的任意一点,则kAC•kBC=$-\frac{b^2}{a^2}$.

查看答案和解析>>

同步练习册答案