精英家教网 > 高中数学 > 题目详情

【题目】

如图,甲向如图1所示的平面区域内随机掷点、乙向如图2所示的平面区域内随机掷点,假设点落在区域内任意一点的可能性相同.已知图1中小圆的半径是大圆半径的二分之一,图2中小正方形的顶点为大正方形各边的中点.

(1)甲、乙各掷点一次,求至少有一人掷点落在阴影区域的概率;

(2)甲、乙各掷点两次,记点落在阴影区域的次数为,求的分布列和数学期望.

12

【答案】见解析

【解析】

(1)图1中阴影区域的面积为整个区域面积的,故甲向该平面区域内随机掷点,点落在阴影部分的概率为,图2中阴影部分的面积为整个区域面积的,故向该平面区域内随机掷点,点落在阴影部分的概率为.(3分)

记“甲掷点一次,点落在阴影区域”为事件,“乙掷点一次,点落在阴影区域”为事件

则事件“甲、乙各掷点一次,二人至少有一人掷点落在阴影区域”的对立事件为

所以至少有一人掷点落在阴影区域的概率为.(6分)

(2)由题可知

.(10分)

所以的分布列为

所以.(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·

乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.

(Ⅰ)求实数的值;

(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,b=2 ,B=
(1)若a=2,求角C;
(2)若D为AC的中点,BD= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随即编号为1,2…960,分组后在第一组采用简单随机抽样的方法抽到的号码为5,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的32人中,做问卷C的人数为(
A.15
B.10
C.9
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是(

A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m﹣
(1)若f(x)是R上的奇函数,求m的值
(2)用定义证明f(x)在R上单调递增
(3)若f(x)值域为D,且D[﹣3,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线y= x与抛物线y= x2﹣4交于A,B两点,线段AB的垂直平分线与直线y=﹣5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的最大值为

查看答案和解析>>

同步练习册答案