A. | (0,4) | B. | (0,$\frac{7}{4}$) | C. | ($\frac{1}{2}$,$\frac{9}{4}$) | D. | ($\frac{1}{4}$,$\frac{7}{8}$) |
分析 由题意,可得-1<x1<0<x2<1<x3<1.5,4.5<x4<6,进而确定(x1+1)(x2+1)=1,x3+x4=6,则$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$=x3x4-5=x3(6-x3)-5=-(x3-3)2+4在(1,1.5)递增,即可求出$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$的取值范围.
解答 解:由题意,可得-1<x1<0<x2<1<x3<1.5,4.5<x4<6,
则|log4(x1+1)|=|log4(x2+1)|,即为-log4(x1+1)
=log4(x2+1),
可得(x1+1)(x2+1)=1,
由y=cos$\frac{π}{3}$x的图象关于直线x=3对称,可得x3+x4=6,
则$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$=x3x4-5=x3(6-x3)-5=-(x3-3)2+4在(1,1.5)递增,
即有$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$的取值范围是(0,$\frac{7}{4}$).
故选B.
点评 本题考查分段函数的运用,考查三角函数知识,考查配方法的运用,确定(x1+1)(x2+1)=1,x3+x4=6是关键.
科目:高中数学 来源: 题型:选择题
A. | 0.001 | B. | 0.1 | C. | 0.2 | D. | 0.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-$\frac{1}{3}$) | B. | (-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}{a^2}$ | B. | $\frac{{\sqrt{3}}}{4}{a^2}$ | C. | $\frac{{\sqrt{6}}}{2}{a^2}$ | D. | $\sqrt{6}{a^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 60、69 | B. | 65、71 | C. | 65、73 | D. | 60、75 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com